onthicaptoc.com
VIẾT PHƯƠNG TRÌNH TIẾP TUYẾN CỦA ĐƯỜNG TRÒN TẠI MỘT ĐIỂM, ĐI QUA MỘT ĐIỂM
A. Phương pháp giải
Cho đường tròn ( C) có tâm I( a; b); bán kính R và điểm M( x0; y0) :
+ Lập phương trình tiếp tuyến (d) của ( C ) tại điểm M:
Do (d) là tiếp tuyến của đường tròn tại M nên d vuông góc IM
⇒ Đường thẳng ( d) : 
⇒ Phương trình đường thẳng d.
+ Lập phương trình tiếp tuyến (d) của ( C) đi qua M :
- Đường thẳng ( d) : 
⇒ (d): A(x - x0) + B( y - y0) = 0.
- Do đường thẳng d là tiếp tuyến của đường tròn ( C) nên d( I; d) = R
⇒ Một phương trình hai ẩn A; B. Giải phương trình ta được A = kB.
- Chọn A= ... ⇒ B=...⇒ Phương trình đường thẳng d.
B. Ví dụ minh họa
Ví dụ 1: Cho đường tròn (C) : (x - 3)2 + (y - 1)2 = 10. Phương trình tiếp tuyến của (C) tại điểm A( 4; 4) là
A. x - 3y + 8 = 0.    B. x + 3y – 16 = 0.    C. 2x - 3y + 5 = 0 .    D. x + 3y - 16 = 0.
Hướng dẫn giải
Đường tròn (C) có tâm I (3;1). Gọi d là tiếp tuyến của đường tròn (C) tại điểm A; khi đó d và IA vuông góc với nhau.
⇒ IA→ = (1; 3) là vectơ pháp tuyến của d.
Suy ra phương trình d: 1( x - 4) + 3( y - 4 ) = 0
Hay x + 3y - 16 = 0.
Chọn D.
Ví dụ 2 : Cho đường tròn (x - 3)2 + (y + 1)2 = 5 . Phương trình tiếp tuyến của ( C) song song với đường thẳng d : 2x + y + 7 = 0 là
A. 2x + y = 0; 2x + y - 10 = 0    B. 2x + y + 1 = 0 ; 2x + y - 1 = 0
C. 2x - y + 1 = 0; 2x + y - 10 = 0    D. 2x + y = 0; x + 2y - 10 = 0
Hướng dẫn:
Do tiếp tuyến cần tìm song song với đường thẳng d: 2x + y + 7 = 0 nên
phương trình tiếp tuyến có dạng ∆: 2x + y + m = 0 với m ≠ 7 .
Đường tròn ( C) có tâm I( 3; -1) và bán kính R = √5
Đường thẳng tiếp xúc với đường tròn ( C) khi :
d( I , ∆) = R ⇔  = √5 ⇔ |5 + m| = 5
⇔ 
Vậy ∆1 : 2x + y = 0 , ∆2 : 2x + y - 10 = 0
Chọn A.
Ví dụ 3. Viết phương trình tiếp tuyến ∆ của đường tròn ( C): x2 + y2 - 4x - 4y + 4 = 0, biết tiếp tuyến đi qua điểm B( 4; 6) .
A. x - 4 = 0 hoặc 3x + 4y - 36 = 0    B. x - 4 = 0 hoặc y - 6 = 0.
C. y - 6 = 0 hoặc 3x + 4y - 36 = 0    D. x - 4 = 0 hoặc 3x - 4y + 12 = 0
Lời giải
+ Đường tròn (C) có tâm I( 2; 2) và bán kính R =  = 2
+ Tiếp tuyến ∆: 
⇒ Phương trình ∆: a(x - 4) + b(y - 6) = 0 hay ax + by - 4a - 6b = 0 (*)
+ Do ∆ là tiếp tuyến của đường tròn ( C) nên d(I; ∆) = R
⇔  = 2 ⇔|- 2a - 4b| = 2
⇔ |a + 2b| =  ⇔ a2 + 4ab + 4b2 = a2 + b2
⇔ 4ab + 3b2 = 0 ⇔ 
+ Nếu b = 0; chọn a = 1 thay vào (*) ta được ∆: x - 4 = 0.
+ Nếu 4a = - 3b ta chọn a = 3 thì b = -4 thay vào ( *) ta được: 3x - 4y + 12 = 0
Vậy có hai tiếp tuyến thỏa mãn là x - 4 = 0 và 3x - 4y + 12 = 0 .
Chọn D.
Ví dụ 4. Phương trình tiếp tuyến d của đường tròn (C): (x + 2)2 + (y + 2)2 = 25 tại điểm M(2; 1) là:
A. d: -y + 1 = 0    B. d: 4x + 3y + 14 = 0
C. d: 3x - 4y - 2 = 0    D. d: 4x + 3y - 11 = 0
Lời giải
+ Đường tròn ( C) có tâm I(-2; -2) và bán kính R= 5.
+ Do đường thẳng d tiếp xúc với đường tròn taị điểm M nên hai đường thẳng d và IM vuông góc với nhau.
+ Đường thẳng d: 
⇒Phương trình (d) : 4( x - 2) + 3( y - 1) = 0 hay 4x + 3y - 11 = 0
Chọn D.
Ví dụ 5. Cho đường tròn ( C): (x-1)2 + (y + 2)2 = 2. Viết phương trình tiếp tuyến d của (C) tại điểm A(3; -4) .
A. d: x + y + 1 = 0    B. d: x - 2y - 11 = 0
C. d: x - y - 7 = 0    D. d: x - y + 7 = 0
Lời giải
+ Đường tròn ( C) có tâm I( 1; -2) .
+ Do đường thẳng d tiếp xúc với đường tròn tại điểm A(3; -4) nên đường thẳng d vuông góc với đường thẳng IA.
+ Phương trình đường thẳng (d): 
⇒ phương trình (d) là: 2( x - 3) – 2( y + 4) = 0
⇔ (d) : 2x - 2y - 14 = 0 hay x - y - 7 = 0
Chọn C.
Ví dụ 6. Cho đường tròn (C): (x + 1)2 + (y - 1)2 = 25 và điểm M(9; -4) . Gọi ∆ là tiếp tuyến của ( C) , biết ∆ đi qua M và không song song với các trục tọa độ. Khi đó khoảng cách từ điểm P(6; 5) đến ∆ bằng:
A. 2    B. 3    C. 4    D. 5
Lời giải
+ Đường tròn (C) có tâm I(-1; 1)và bán kính R= 5.
+ Tiếp tuyến ∆: 
⇒ Phương trình ∆: a(x - 9) + b(y + 4) = 0 hay ax + by – 9a + 4b = 0 (*)
+ Do ∆ là tiếp tuyến của đường tròn ( C) nên d(I; ∆) = R
⇔  = 5 ⇔ |-10a + 5b| = 5
⇔ |-2a + b| = 
⇔ 4a2 - 4ab + b2 = a2 + b2 ⇔ 3a2 - 4ab = 0
⇔ 
+ Nếu a = 0 chọn b = 1 thay vào (*) ta được: y + 4 = 0 ( loại) vì tiếp tuyến không song song với các trục tọa độ.
+ Nếu 3a = 4b, chọn a = 4 thì b = 3 ta được ∆: 4x + 3y - 24 = 0
⇒ Khoảng cách từ P(6;5) đến đường thẳng ∆ là:
d(P, ∆) =  = 3
Chọn B.
Ví dụ 7. Có bao nhiêu đường thẳng đi qua gốc tọa độ O và tiếp xúc với đường tròn
(C): x2 + y2 - 2x + 4y - 11 = 0?
A. 0.    B. 2.    C. 1.    D. 3.
Lời giải
Đường tròn (C) có tâm I(1; -2) và bán kính R =  = 4.
Độ dài OI =  = √5
⇒ Điểm O nằm trong đường tròn nên không có tiếp tuyến nào của đường tròn kẻ từ O.
Chọn A.
Ví dụ 8. Cho đường tròn (C): (x-3)2 + (y + 3)2 = 1. Qua điểm M(4; -3) có thể kẻ được bao nhiêu đường thẳng tiếp xúc với đường tròn ( C) ?
A. 0.    B. 1.    C. 2.    D. Vô số.
Lời giải
Thay tọa độ điểm M vào phương trình đường tròn( C) ta được :
( 4 - 3)2 + (-3 + 3)2 = 1
⇒ Điểm M thuộc (C).
⇒ có đúng 1 tiếp tuyến của đường tròn kẻ từ M.
Chọn B.
Ví dụ 9. Có bao nhiêu đường thẳng đi qua điểm N(-2; 0) tiếp xúc với đường tròn
(C): (x - 2)2 + (y + 3)2 = 4?
A. 0.    B. 1.    C. 2.    D. Vô số.
Lời giải
Đường tròn ( C) có tâm I(2; -3) và bán kính R = 2.
Độ dài IN =  = 5 > R
⇒ Điểm N nằm ngoài đường tròn ( C) nên qua điểm N kẻ được hai tiếp tuyến đến đường tròn (C).
Ví dụ 10. Viết phương trình tiếp tuyến ∆ của đường tròn (C):(x - 1)2 + (y+2)2 = 8, biết tiếp tuyến đi qua điểm A( 5; -2).
A. x - 5 = 0 .    B. x + y - 3 = 0 hoặc x – y - 7 = 0.
C. x- 5= 0 hoặc x + y - 3 = 0 .    D. y + 2 = 0 hoặc x - y - 7 = 0 .
Lời giải
+ Đường tròn (C) có tâm I(1; -2) và bán kính R = 2√2
+ Tiếp tuyến ∆:
 
⇒ Phương trình ∆: a( x - 5) + b(y + 2) = 0 hay ax + by - 5a + 2b = 0.
+ Do ∆ là tiếp tuyến của đường tròn ( C) nên d(I; ∆) = R
⇔  = 2√2 ⇔ |- 4a| = 2√2.
⇔ 16a2 = 8( a2 + b2 ) ⇔ 8a2 = 8b2
⇔ 
+ Nếu a = b; ta chọn a = 1 ⇒ b = 1. Khi đó phương trình tiếp tuyến ∆: x + y - 3 = 0
+ Nếu a = - b; chọn a = 1 thì b = - 1. Khi đó phương trình tiếp tuyến ∆: x - y - 7 = 0.
Vậy có hai tiếp tuyến thỏa mãn là x + y - 3 = 0 và x - y - 7 = 0
Chọn B.
Ví dụ 11: Cho đường tròn ( C) có tâm I(1; 3), bán kính R= √52. Lập phương trình tiếp tuyến của đường tròn tại điểm M biết điểm M thuộc đường thẳng d:  và tọa độ M nguyên?
A. x + 2y + 3 = 0    B. 2x + 5y + 21 = 0
C. 2x - 3y - 19 = 0    D. Đáp án khác
Lời giải
+ Do điểm M thuộc đường thẳng d nên tọa độ M(3 + 2t; 1 - 4t).
+ Do điểm M thuộc đường tròn nên IM = R
⇔ IM2 = R2 ⇔ ( 2 + 2t)2 + ( 2 + 4t)2 = 52
⇔ 4t2 + 8t + 4 + 16t2 + 16t + 4 = 52
⇔ 20t2 + 24t – 44 = 0 ⇔ t = 1 hoặc t =  ( loại) .
+ Với t = 1 thì tọa độ M(5; -3) .
⇒ Phương trình tiếp tuyến của đường tròn tại điểm M (5; -3):
(∆) : 
⇒ Phương trình tiếp tuyến : 2( x - 5) – 3(y + 3) = 0 hay 2x - 3y - 19 = 0
Chọn C.
I. C. Bài tập vận dụng
Câu 1: Phương trình tiếp tuyến d của đường tròn (C): x2 + y2 - 3x-y= 0 tại điểm N(1;-1) là:
A. d: x + 3y - 2 = 0    B. d: x - 3y + 4 = 0
C. d: x - 3y - 4 = 0    D. d: x + 3y + 2 = 0
Đáp án: D
Trả lời:
+ Đường tròn (C) có tâm I(  ;  ).
+ Do đường thẳng d tiếp xúc với đường tròn ( C) tại điểm N nên đường thẳng d vuông góc với đường thẳng IN.
+ Phương trình đường thẳng (d) : 
⇒(d): 1(x - 1) + 3( y + 1) = 0 hay ( d): x + 3y + 2 = 0
Câu 2: Cho đường tròn( C): x2 + y2 - 2x + 8y - 23 = 0 và điểm M( 8; -3) . Độ dài đoạn tiếp tuyến của ( C) xuất phát từ M là :
A. 10    B. 2√10    C.     D. √10
Đáp án: D
Trả lời:
Đường tròn ( C) có tâm I( 1; -4) bán kính R = √40 .
Độ dài IM =  = √50 > R
⇒ Điểm M nằm ngoài đường tròn. Khi đó từ M sẽ kẻ được hai tiếp tuyến là MA và MB- trong đó A và B là hai tiếp điểm .
Theo tính chất hai tiếp tuyến cắt nhau ta có:
MA = MB =  = √10
Vậy độ dài tiếp tuyến là : √10.
Câu 3: Cho đường tròn ( C ) : x2 + y2 - 3x - y = 0. Phương trình tiếp tuyến của ( C) tại M(1 ; -1) là:
A. x + 3y - 1 = 0    B. 2x - 3y + 1 = 0    C. 2x - y + 4 = 0    D. x + 3y + 2 = 0
Đáp án: D
Trả lời:
Đường tròn ( C) có tâm I(  ;  ).
Điểm M(1; -1) thuộc đường tròn (C).
Phương trình tiếp tuyến của đường tròn (C) tại điểm M là đường thẳng đi qua M và nhận vec tơ  = (-  ; -  ) = -  (1; 3) nên có phương trình:
1( x - 1) + 3( y + 1) = 0 hay x + 3y + 2 = 0
Câu 4: Cho đường tròn (x - 3)2 + (y - 1)2 = 10 . Phương trình tiếp tuyến của (C) tại điểm A( 4; 4) là
A. x - 3y + 5 = 0    B. x + 3y - 4 = 0    C. x - 3y + 16 = 0    D. x + 3y - 16 = 0
Đáp án: D
Trả lời:
Đường tròn ( C) có tâm I(3; 1) và bán kính R = √10.
Tiếp tuyến của ( C) tại A là đường thẳng qua A( 4; 4) và nhận vecto IA→( 1; 3) là vectơ pháp tuyến của tiếp tuyến d.
Suy ra (d) : 1( x - 4) + 3( y - 4) = 0 hay x + 3y - 16 = 0
Câu 5: Cho đường tròn (x - 2)2 + (y - 2)2 = 9 . Phương trình tiếp tuyến của (C) đi qua điểm A( 5; -1) là
A. x + y - 4 = 0 và x - y - 2 = 0 .    B. x = 5 và y = -1.
C. 2x - y - 3 = 0 và 3x + 2y - 3 = 0.    D. 3x - 2y + 1 = 0 và 2x + 3y + 5 = 0
Đáp án: B
Trả lời:
+ Đường tròn (C) có tâm I( 2; 2) và bán kính R = 3.
+ ∆ là tiếp tuyến cần tìm : đi qua A(5, -1) và nhận VTPT  ( A; B)
⇒ (∆ ) : A( x - 5) + B( y + 1) = 0 (*)
+ Do ∆ là tiếp tuyến của ( C) nên :
d( I ; ∆) = R ⇔  = 3
⇔ |-3A + 3B| = 3 ⇔ 9A2 - 18AB + 9B2 = 9A2 + 9B2
⇔ 18AB = 0 ⇔ 
+ Với A =0 ; chọn B = 1 thay vào (*) ta được : y + 1 = 0
+ Với B = 0 ; chọn A = 1 thay vào ( *) ta được :x - 5 = 0
Vậy có hai tiếp tuyến thỏa mãn là y + 1 = 0 và x - 5 = 0
Câu 6: Cho đường tròn (C): x2 + y2 + 2x - 6y + 5 = 0 . Phương trình tiếp tuyến của (C) song song với đường thẳng d: x + 2y - 15 = 0 là
A. x + 2y = 0 và x + 2y - 10 = 0.    B. x - 2y = 0 và x - 2y + 10 = 0.
C. x + 2y - 12 = 0 và x + 2y + 22 = 0    D. x + 2y + 3 = 0 và x + 2y + 7 = 0
Đáp án: A
Trả lời:
+ Đường tròn ( C) có tâm I( -1;3) và bán kính R =  = √5
+ Do tiếp tuyến cần tìm song song với đường thẳng d: x + 2y- 15= 0 nên tiếp tuyến ∆ có dạng : x + 2y + m= 0 ( m≠-15) .
+ ∆ là tiếp tuyến của ( C) khi và chỉ khi:
d(I ;∆) = R ⇔  = √5 ⇔ |m + 5| = 5
⇔ 
⇒ Có hai tiếp tuyến thỏa mãn là : x + 2y = 0 và x + 2y - 10 = 0
Câu 7: Đường tròn ( C) có tâm I ( -1; 3) và tiếp xúc với đường thẳng d: 3x - 4y + 5 = 0 tại điểm H có tọa độ là
A. ( -  ; -  )    B. ( ;  )    C. ( ; -  )    D. ( -  ;  )
Đáp án: B
Trả lời:
Do đường thẳng d là tiếp tuyến của đường tròn ( C) tại điểm H nên IH vuông góc với đường thẳng d.
⇒ Đường thẳng IH: 
⇒ Phương trình IH: 4( x + 1) + 3( y - 3) = 0 hay 4x + 3y - 5 = 0.
Do đường thẳng d và đường thẳng IH cắt nhau taị điểm H nên tọa độ điểm H là nghiệm hệ phương trình:
Câu 8: Cho đường tròn (C) : x2 + y2 - 6x + 2y + 5 = 0 và đường thẳng
d: 2x + (m - 2)y – m - 7 = 0. Với giá trị nào của m thì d là tiếp tuyến của (C) ?
A. m = 3    B. m = 15    C. m = 13    D. m = 3 hoặc m = 13.
Đáp án: D
Trả lời:
+ đường tròn (C) có tâm I( 3 ;-1) và bán kính .
+ d là tiếp tuyến của (C) khi va chỉ khi:
d(I, d) = R ⇔  = √5 ⇔ |1 - 2m| = √5.
→ m2 - 16m + 39 = 0 ⇔ 
Câu 9: Cho đường tròn ( C) có tâm I(-1; 2), bán kính R = √29. Lập phương trình tiếp tuyến của đường tròn tại điểm M biết điểm M thuộc đường thẳng d:  và tọa độ M nguyên?
A. x + 2y + 3 = 0    B. 2x + 5y + 21 = 0
C. 3x + 5y - 8 = 0    D. Đáp án khác
Đáp án: B
Trả lời:
+ Do điểm M thuộc đường thẳng d nên tọa độ M(-2 + t; 3t).
+ Do điểm M thuộc đường tròn nên IM = R
⇔ IM2 = R2 ⇔ ( t- 1)2 + ( 3t - 2)2 = 29
⇔ t2 - 2t + 1 + 9t2 - 12t + 4 = 29
⇔ 10t2 – 14t – 24 = 0 ⇔ t = - 1 hoặc t =  ( loại) .
+ Với t = - 1 thì tọa độ M( - 3; - 3) .
⇒ Phương trình tiếp tuyến của đường tròn tại điểm M ( -3; -3):
(∆) : 
⇒ Phương trình tiếp tuyến : 2( x + 3) + 5( y + 3) = 0 hay 2x + 5y + 21 = 0 .

onthicaptoc.com viet phuong trinh tiep tuyen cua duong tron tai mot diem di qua mot diem

Xem thêm
Phụ lục III: Khung kế hoạch giáo dục của giáo viên
KẾ HOẠCH DẠY HỌC CỦA GIÁO VIÊN
MÔN TOÁN - KHỐI LỚP 12 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG
PHƯƠNG PHÁP XÉT TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ CHO BỞI CÔNG THỨC
I. Phương pháp
Bước 1: Tìm tập xác định .
TRẮC NGHIỆM VECTƠ TRONG KHÔNG GIAN
DẠNG 1: CÁC PHÉP VECTƠ TRONG KHÔNG GIAN
Câu 1.Cho hình tứ diện có trọng tâm và là một điểm bất kỳ. Mệnh đề nào sau đây đúng?
TRẮC NGHIỆM HỆ TRỤC TỌA ĐỘ TRONG KHÔNG GIAN
Câu 1. Trong không gian với hệ trục tọa độ . Tọa độ của vectơ là
A. .B. .C. .D. .
BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
Câu 1: Cho thỏa . Khi đó giá trị lớn nhất của biểu thức bằng bao nhiêu?
A. .B. .C. .D. .
TRẮC NGHIỆM PHƯƠNG TRÌNH TIẾP TUYỄN
I. VIẾT PHƯƠNG TRÌNH TIẾP TUYẾN TẠI MỘT ĐIỂM
Câu 1. Cho hàm số , có đồ thị và điểm . Phương trình tiếp tuyến của tại là:
TRẮC NGHIỆM ĐÚNG SAI TÍCH PHÂN
Câu 1: Cho hàm số liên tục trên đoạn . Gọi là một nguyên hàm của hàm số trên đoạn .
a) .