onthicaptoc.com
TRẮC NGHIỆM TIỆM CẬN DẠNG ĐÚNG SAI
Câu 1. Cho hàm số , khi đó:
a. Đồ thị hàm số không có tiệm cận ngang.
b. Đồ thị hàm số có tiệm cận đứng là đường thẳng .
c. Giao điểm của hai tiệm cận đồ thị nằm trên trục hoành.
d. Giao điểm của hai tiệm cận đồ thị là đỉnh parabol
Câu 2. Cho hàm số , khi đó:
a. Đồ thị hàm số có tiệm cận ngang là đường thẳng .
b. Đồ thị hàm số có tiệm cận đứng là .
c. Đường tiệm cận ngang cắt đồ thị hàm số tại 3 điểm.
d. Hình chữ nhật giới hạn bởi 2 tiệm cận của đồ thị và hai trục tọa độ có diện tích bằng 1 .
Câu 3. Cho hàm số , khi đó:
a. Đồ thị hàm số không có tiệm cận ngang.
b. Đường tiệm cận xiên của đồ thị tạo với hai trục tọa độ một tam giác có diện tích bằng 1 .
c. Giao điểm hai tiệm cận của đồ thị nằm trên parabol .
d. Đường tiệm cận xiên của đồ thị vuông góc với đường thẳng .
Câu 4. Cho hàm số , khi đó:
a. Đồ thị hàm số có hai đường tiệm cận.
b. Đường tiệm cận xiên của đồ thị tạo với hai trục tọa độ một tam giác vuông cân.
c. Giao điểm của hai tiệm cận nằm trục hoành.
d. Đường tiệm cận xiên của đồ thị song song với đường thẳng .
Câu 5. Cho hàm số biết đồ thị hàm số có tiện cận xiên là đường thẳng , khi đó:
a. Giao điểm của và trục có hoành lớn hơn 2 .
b. Giao điểm của và tiệm cận đứng của có tọa độ là .
c. Gọi ta có .
d. Giá trị lớn nhất của hàm số trên là 4 .
Câu 6. Cho hàm số biết đồ thị hàm số có tiệm cận xiên là đường thẳng và tiện cận đứng là đường thẳng . Khi đó:
a. Giá trị của biểu thức lớn hơn 4
b. Gọi điểm ta có độ dài của nhỏ hơn 2 .
c. Gọi và ta có .
d. Giá trị nhỏ nhất của hàm số trên lớn hơn -3 .
Câu 7. Cho hàm số và biết đồ thị hàm số có tiện cận đứng và tiện cận ngang là các đường thẳng có tiện cận xiên là đường thẳng Khi đó:
a. Giá trị của biểu thức .
b. Đồ thị hàm số có tiện cận ngang là đường thẳng .
c. Giao điểm của ba đường tiện cận ở đề bài tạo thành tam giác có diện tích bằng 2 .
d. Đồ thị hàm số và có chung đường tiệm cận đứng.
Câu 8. Cho hàm số biết đồ thị hàm số có tiện cận đừng và tiện cận ngang là các đường thẳng , Khi đó
a. Giá trị của biểu thức lớn hơn .
b. Gọi điểm thì trung điểm của đoạn có tọa độ là .
c. Điểm không nằm trên đường tiện cận đứng .
d. Tâm đối xứng của đồ thị hàm số có tọa độ là .
Câu 9. Cho hàm số . Khi đó
a. Nếu thì đường thẳng là tiện cận ngang của .
b. Đồ thị hàm số đã cho có tiệm cận đứng khi .
c. Điểm là tâm đối xứng của đồ thị hàm số khi .
d. ta có tiệm cận ngang của là đường thẳng .
Câu 10. Cho hàm số có bảng biến thiên
Các khẳng định dưới đây đúng hay sai?
STT
Phát biểu
Đúng
Sai
Đồ thị hàm số có 1 đường tiệm cận đứng.
Đồ thị hàm số có tổng 3 đường tiệm cận ngang và đứng.
Số tiệm cận ngang của đồ thị hàm số
bằng 3.
Tổng số tiệm cận của đồ thị hàm số bằng
4.
Câu 11. Cho hàm số có đồ thị như hình vẽ bên dưới
STT
Phát biểu
Đúng
Sai
a
Số tiệm cận ngang của đồ thị hàm số
bằng 2 .
b
Số tiệm cận đứng của đồ thị hàm số bằng 3 .
c
Tổng số tiệm cận của đồ thị hàm số bằng 6 .
Có 4 giá trị nguyên để đồ thị hàm số
có đúng 6 tiệm cận đứng.
Câu 12. Cho hàm số có báng biến thiên ở bảng bên dưới và là tiệm cận xiên .
Các khẳng định dưới đây đúng hay sai?
STT
Phát biểu
Đúng
Sai
Đồ thị hàm số có tiệm cận đứng là .
.
Có 10 giá trị nguyên dương để đồ thị hàm số có tiệm cận đứng và tiệm cận ngang sao cho .
d
Khi nguyên dương thì giá trị lớn nhất của .
Câu 13. Cho hàm số là các hàm số bậc ba có bảng biến thiên ở bảng bên dưới
Các khẳng định dưới đầy đúng hay sai?
STT
Phát biểu
Đúng
Sai
a
Đồ thị hàm số có 5 tiệm cận
ngang.
b
Đồ thị hàm số có 3 tiệm cận
đứng.
c
Đồ thị hàm số có 4 tiệm
cận đứng.
Đồ thị hàm số và
có tổng 10 tiệm cận.
Câu 14. Cho hàm số có đồ thị như hình vẽ. Xét tính đúng-sai của các khẳng định sau:
a) Đường thẳng là tiệm cận đứng của đồ thị .
b) Đường thẳng là tiệm cận ngang của đồ thị .
c) .
d) .
Câu 15. Cho hàm số co đồ thị như hình vẽ. Xét tính đúng-sai của các khẳng định sau:
a) Tọa độ giao điểm của hai đường tiệm cận là .
b) .
c) .
d) .
Câu 16. Cho hàm số có đồ thị , đồ thị hàm số như hình vẽ bên.
Biết đồ thị hàm sồ cắt trục tung tại điểm có tung độ bằng 3.
a)
b)
c)
d)
Phương trình tiếp tuyến của tại điểm là :
Câu 17. Cho hàm số có đồ thị như hình vẽ. Xét tính đúng-sai của các khẳng định sau:
a) Đường thẳng là tiệm cận đứng của đồ thị .
b) .
c) .
d) Đường thẳng là tiệm cận xiên của đồ thị .
Câu 18. Cho hàm số có đồ thị như hình vẽ. Xét tính đúng-sai của các khẳng định sau:
a) .
b) .
c) .
d) .
Câu 19. Cho hàm số có bảng biến thiên như sau:
a) Hàm số đã cho có đường tiệm cận đứng là .
b) Đồ thị hàm số có đường tiệm cận ngang là .
c) Đồ thị hàm số có hai đường tiệm cận đứng.
d) Số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là 3 .
Câu 20. Cho hàm số và điểm với , khi đó:
a. Đồ thị hàm sốcó hai đường tiệm cận xiên đều là các hàm số đồng biến trên .
b. Xét là tiện cận xiên của điểm .
c. Xét là tiện cận xiên của khi đó .
d. Hoành độ giao điểm của hai đường tiệm cận xiên bằng -2 .
onthicaptoc.com
onthicaptoc.com Trac nghiem Tiem can dang dung sai hay
1.1.1Phương trình bậc nhất hai ẩn
Định nghĩa .
Câu 1.Để loại bỏ chất gây ô nhiễm không khí từ khí thải của một nhà máy, người ta ước tính chi phí cần bỏ ra là (triệu đồng).
Số tiệm cận đứng của đồ thị hàm số là?
Câu 1: Điểm là điểm trên đường tròn lượng giác, biểu diễn cho góc lượng giác có số đo . Tìm khẳng định đúng.
A. .B. .C. .D. .
A. LÝ THUYẾT
Sự điện li là quá trình phân li các chất khi tan trong nước thành các ion. Chất điện li là những chất tan trong nước phân li thành các ion . Chất không điện li là chất khi tan trong nước không phân li thành các ion
DỰA VÀ BẢNG BIẾN THIÊN VÀ ĐỒ THỊ
Ví dụ 1: Cho hàm số liên tục trên đoạn và có bảng biến thiên trong đoạn như hình. Gọi là giá trị lớn nhất của hàm số trên đoạn . Tìm giá trị của ?
Câu 1.Trong không gian , cho điểm và mặt phẳng .
Khẳng định nào sau là đúng hay sai?
Câu 1: (SBT - KNTT) Hiện tượng giao thoa sóng là hiện tượng
A. giao thoa của hai sóng tại một điểm trong môi trường.