lefttopDạng 1. Bài toán tương giao đồ thị thông qua đồ thị, bảng biến thiên
Nghiệm của phương trình là số giao điểm của đường thẳng với đồ thị hàm số
(ĐỀ MINH HỌA THI TỐT NGHIỆP THPT 2023) Cho hàm số bậc ba có đồ thị là đường cong trong hình bên.
Có bao nhiêu giá trị nguyên của tham số để phương trình có ba nghiệm thực phân biệt?
A. 2.B. 5 .C. 3.D. 4 .
Lời giải
Chọn C
Phương trình có ba nghiệm thực phân biệt .
Do nguyên nên
Vậy có 3 giá trị nguyên
(ĐỀ THI TỐT NGHIỆP THPT 2023) Cho hàm số bậc bốn có đồ thị là đường cong trong hình bên dưới.
Có bao nhiêu giá trị nguyên của tham số sao cho ứng với mỗi , phương trình có 4 nghiệm thực phân biệt?
A. .B. .C. .D. .
Lời giải
Chọn C
Ta có .
Dựa vào đồ thị, phương trình trên có 4 nghiệm thực phân biệt khi và chỉ khi .
Suy ra, các giá trị nguyên của tham số thỏa mãn yêu cầu bài toán là:
Có tất cả số thỏa mãn.
(ĐỀ THI TỐT NGHIỆP THPT 2022) Cho hàm số có đồ thị là đường cong trong hình bên.

onthicaptoc.com Chuyen de su tuong giao giua hai do thi muc thong hieu hay

Xem thêm
BỘ GIÁO DỤC VÀ ĐÀO TẠO
CHƯƠNG TRÌNH GIÁO DỤC PHỔ THÔNG
MÔN TOÁN
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu thí sinh chỉ chọn một phương án.
Câu 1.[1] Trong không gian với hệ tọa độ , cho hai vecto . Tính góc giữa hai vecto và .
A B. C. D.
Câu 1: Cho hàm số có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng
A. 3.B. -2.C. 2.D. -1.
ĐỀ KHẢO SÁT THÁNG 10 NĂM HỌC 2024 – 2025
MÔN TOÁN LỚP 12
Thời gian làm bài: 90 phút (Không kể thời gian giao đề
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Câu 1. Nguyên hàm của hàm số là
Họ, tên thí sinh:…………………………………….
Số báo danh: ……………………………………….Câu 1: Cho số phức có . Phần ảo của bằng
A. -5 .B. -6 .C. 5 .D. 6 .
PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Trong không gian với hệ tọa độ , khoảng cách từ điểm đến mặt phẳng ( ) bằng
A. 4.B. 5.C. 3.D. 2.