Cho hàm số có đồ thị như hình vẽ dưới đây. Hàm số đã cho đồng biến trên khoảng nào trong các khoảng sau?
A. .B. .C. .D. .
Trong không gian , cho mặt phẳng . Véc tơ nào dưới đây là một véc tơ pháp tuyến của ?
A. .B. .C. .D. .
Đường thẳng đi qua điểm vuông góc với mặt phẳng có phương trình chính tắc là
A. .B. .C. .D. .
Biết . Giá trị của biểu thức bằng
A. .B. .C. .D. .
Nghiệm của phương trình là
A. .B. .C. .D. .
Bảng sau thống kê thời gian tập thể dục mỗi ngày trong tháng 3/2025 của hai bạn Hưng và Bình.
Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục của Hưng và Bình lần lượt là
A. 20 phút và 25 phútB. 25 phút và 20 phút.C. 20 phút và 20 phút.D. 25 phút và 25 phút.
Họ nguyên hàm của hàm số là
A. .B. .C. .D. .
Cho hàm số có đồ thị như hình vẽ dưới đây:
Tiệm cận đứng của đồ thị hàm số là
A. .B. .C. .D. .
Các nghiệm của phương trình là
A. .B. .

onthicaptoc.com De thi thu TN 2025 So GD Hung Yen

Xem thêm
BỘ GIÁO DỤC VÀ ĐÀO TẠO
CHƯƠNG TRÌNH GIÁO DỤC PHỔ THÔNG
MÔN TOÁN
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu thí sinh chỉ chọn một phương án.
Câu 1.[1] Trong không gian với hệ tọa độ , cho hai vecto . Tính góc giữa hai vecto và .
A B. C. D.
Câu 1: Cho hàm số có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng
A. 3.B. -2.C. 2.D. -1.
ĐỀ KHẢO SÁT THÁNG 10 NĂM HỌC 2024 – 2025
MÔN TOÁN LỚP 12
Thời gian làm bài: 90 phút (Không kể thời gian giao đề
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Câu 1. Nguyên hàm của hàm số là
Họ, tên thí sinh:…………………………………….
Số báo danh: ……………………………………….Câu 1: Cho số phức có . Phần ảo của bằng
A. -5 .B. -6 .C. 5 .D. 6 .
PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Trong không gian với hệ tọa độ , khoảng cách từ điểm đến mặt phẳng ( ) bằng
A. 4.B. 5.C. 3.D. 2.