onthicaptoc.com giai bt toan 7 bai 9 tinh chat truc tam
Giải SBT Toán 7 bài 9: Tính chất ba đường cao của tam giác
Câu 1: Cho tam giác ABC vuông tại B. Điểm nào là trực tâm của tam giác đó?
Lời giải:
Vì tam giác ABC vuông tại B nên AB ⊥ BC.
Suy ra AB là đường cao kẻ từ đỉnh A và CB là đường cao kẻ từ đỉnh C.
Vì B là giao điểm của 2 đường cao AB và CB nên B là trực tâm của tam giác ABC.
Câu 2: Cho hình bên
a, Chứng minh: CI ⊥ AB
b, Cho ∠(ACB)= 40o. Tính ∠(BID), ∠(DIE).
Lời giải:
a. Trong ΔABC ta có hai đường cao AD và BE cắt nhau tại I nên I là trực tâm của ΔABC
Suy ra: CI là đường cao thứ ba.
Vậy CI ⊥ AB.
b. Trong tam giác BEC có ∠(BEC)= 90o
⇒ ∠(EBC) + ∠C= 90o (tính chất tam giác vuông)
⇒ ∠(EBC)= 90o - ∠C= 90o - 40o = 50o hay ∠(IBD)= 50o
Trong tam giác vuông IDB có ∠(IDB) = 90o
⇒ ∠(IBD) + ∠(BID)= 90o (tính chất tam giác vuông)
⇒ ∠(BID) = 90o - ∠(IBD) = 90o - 50o = 40o