NGUYÊN HÀM
Thời lượng: 5 tiết
A. Mục tiêu
1. Kiến thức:
- Hiểu khái niệm nguyên hàm của một hàm số;
- Biết các tính chất cơ bản của nguyên hàm
2. Kĩ năng:
- Tìm được nguyên hàm của một số hàm số tương đối đơn giản dựa vào bảng nguyên hàm và cách tính nguyên hàm từng phần
- Sử dụng được phương pháp đổ biến số(Khi đã chỉ rõ cách đổi biến số và không đổ biến số quá một lần) để tính nguyên hàm
3. Tư tưởng; thái độ: Rèn luyện việc tính toán chính xác; cẩn thận. Tính chủ động sáng tạo cho học sinh
4.Năng lực hướng tới:
Năng lực chung
- Năng lực hợp tác, giao tiếp, tự học, tự quản lí
- Năng lực tuy duy, sáng tạo, tính toán, giải quyết vấn đề
- Năng lực sử dụng CNTT, sử dụng ngôn ngữ Toán học.
- Năng lực mô hình hóa toán học và năng lực giải quyết vấn đề
- Năng lực sử dụng công nghệ tính toán
Năng lực chuyên biệt: Thấy được ứng dụng của toán học trong đời sống, từ đó hình thành niềm say mê khoa học, và có những đóng góp sau này cho xã hội.
B. Nội dung chủ đề
Nội dung 1: Định nghĩa nguyên hàm
Nội dung 2: Tính chất của nguyên hàm
Nội dung 3: Phương pháp tính nguyên hàm: Phương pháp đổi biến số, phương pháp nguyên hàm từng phần
Mô tả cấp độ tư duy của từng nội dung
1. Định nghĩa tích phân
NHẬN BIẾT
THÔNG HIỂU
VẬN DỤNG
VẬN DỤNG CAO
Phát biểu được định nghĩa nguyên hàm, ký hiệu dấu nguyên hàm, biểu thức dưới dấu nguyên hàm.
Tìm được nguyên hàm của một số hàm số tương đối đơn giản dựa vào bảng nguyên hàm và cách tính nguyên hàm từng phần
Sử dụng được phương pháp đổ biến số(Khi đã chỉ rõ cách đổi biến số và không đổ biến số quá một lần) để tính nguyên hàm
- Sử dụng định nghĩa để tính được nguyên hàm của một số hàm số khác
Tiết 1
C. Tiến trình lên lớp
1. Ổn định lớp; kiểm tra sĩ số
2. Kiểm tra bài cũ: thực hiện trong quá trình lên lớp
3. Bài mới:
Nội dung kiến thức cần đạt
Hoạt động của thầy và trò
I. Nguyên hàm và các tính chất
1. Nguyên hàm
Định nghĩa: Cho là một khoảng hoặc đoạn hoặc nửa khoảng. Hàm số được gọi là một nguyên hàm của hàm số trên nếu
Ví dụ
1) là một nguyên hàm của trên
2) là một nguyên hàm của trên
Định lí 1: Nếu là một nguyên hàm của hàm số trên thì với mỗi ; cũng là một nguyên hàm của trên
Định lí 2: Nếu là một nguyên hàm của hàm số trên mỗi nguyên hàm của trên đều có dạng
Tóm lại: Nếu là một nguyên hàm của hàm số trên thì họ các nguyên hàm của trên là . Và được kí hiệu là . Như vậy ta có:
Ví dụ:
Giáo viên: Vấn đáp
- Hàm số nào có đạo hàm là
- Đạo hàm của hàm số
Học sinh:
Chủ động làm việc; trả lời câu hỏi của thầy cô
Giáo viên:
- Nói: Hàm số là một nguyên hàm của hàm số và hàm số là một nguyên hàm của hàm số
Học sinh:
- Tri giác vấn đề
- Hình thành khái niện mới; chuẩn bị đề xuất khái niệm mới
Giáo viên:
- Yêu cầu học sinh đề xuất khái niệm mới
- Nhận xét khái niệm mà học sinh đề xuất; chính xác hoá khái niệm
- Vấn đáp:
+) Ngoài hàm số ; hãy chỉ ra một nguyên hàm khác của
+) Hàm số với là hằng số có phải là nguyên hàm của hàm số hay không
Học sinh:
Dựa vào định nghĩa; trả lời câu hỏi của thầy cô
Giáo viên:
- Phát biểu định lí 1; định lí 2
- Yêu cầu học sinh chứng minh định lí 1
Học sinh:
- Ghi nhớ các định lí 1;2
- Chứng minh định lí 1
2. Các tính chất của nguyên hàm
Tính chất 1:
Tính chất 2:
Tính chất 3:
Giáo viên:
- Giới thiệu các tính chất của nguyên hàm
- Yêu cầu học sinh chứng minh nhanh các tính chất của nguyên hàm
Học sinh:
- Ghi nhớ các tính chất của nguyên hàm
- Vận dụng các tính chất của đạo hàm và định nghĩa nguyên hàm để chứng minh nhanh các tính chất của nguyên hàm
3. Điều kiện tồn tại nguyên hàm:
Định lí 3: Mọi hàm số xác định trên đều có nguyên hàm trên
Sử dụng phương pháp thuyết trình
4. Bảng nguyên hàm của một số hàm số sơ cấp cơ bản
Từ bảng đạo hàm của các hàm số sơ cấp cơ bản và khái niệm nguyên hàm ta có bảng sau:
Ví dụ áp dụng:
Giáo viên:
- Tổ chức cho học sinh tự ôn tập kiến thức cũ: Hãy liệt kê các hàm số sơ cấp cơ bản và đạo hàm của nó
- Yêu cầu học sinh chuyển bảng đạo hàm của các hàm số sơ cấp cơ bản sang ngôn ngữ nguyên hàm
Học sinh:
- Chủ động ôn tập kiến thức cũ theo hướng dẫn của thầy cô
- Vận dụng khái niệm nguyên hàm vừa học phát biểu lại bảng đạo hàm dưới ngôn ngữ nguyên hàm
Giáo viên:
- Gọi học sinh thay nhau trả lời
- Nhận xét; chỉnh sửa; chính xác hoá kiến thức; tổng hợp thành bảng
Học sinh: Ghi nhớ bảng nguyên hàm của các hàm số sơ cấp cơ bản
Củng cố kiến thức:
Tìm các nguyên hàm sau:
4. Củng cố bài học:
- Khái niệm nguyên hàm của hàm số; bảng đạo hàm của các hàm số sơ cấp cơ bản
- Các tính chất của nguyên hàm; và điều kiện tồn tại nguyên hàm
5. Bài tập và hướng dẫn học ở nhà: Làm bài tập 2. SGK và đọc trước các phương pháp tính nguyên hàm
D. Rút kinh nghiệm
Tiết 2
C. Tiến trình lên lớp
1. Ổn định lớp; kiểm tra sĩ số
2. Kiểm tra bài cũ: thực hiện trong quá trình lên lớp
3. Bài mới:
Nội dung kiến thức cần đạt
Hoạt động của thầy và trò
Tóm tắt kiến thức:
- Khái niệm nguyên hàm của hàm số trên .
- Nếu là một nguyên hàm của trên thì họ nguyên hàm của trên là:
- Sự tồn tại nguyên hàm: Nếu là hàm số liên tục trên thì có nguyên hàm trên
Bài 1. Kiểm tra xem hàm số nào là một nguyên hàm của hàm số còn lại trong mỗi cặp hàm số sau:





Giáo viên: Tổ chức cho học sinh chủ động ôn tập kiến thức cũ:
- Khái niệm nguyên hàm của hàm số trên tập hợp ?
- Để kiểm tra xem có phải là nguyên hàm của hàm số hay không ta phải làm thế nào? Từ đó hãy đề xuất cách giải toán.
Học sinh:
- Chủ động ôn tập kiến thức cũ theo hướng dẫn của thầy cô?
- Định hướng cách giải toán
- Đề xuất cách giải của mình
Giáo viên:
- Nhận xét góp ý cho hướng giải mà học sinh đề xuất.
- Giao nhiệm vụ cho học sinh
Học sinh:
- Chủ động làm bài tập
- Xung phong lên bảng trình bầy
Giáo viên:
- Gọi 5 học sinh lên bảng trình bầy bài
- Đôn đốc giúp đỡ các học sinh khác giải toán
- Nhận xét bài làm của học sinh
Bài 2. Chứng minh rằng mỗi hàm số và đều là nguyên hàm của cùng một hàm số:



Giáo viên:
- Gọi 3 học sinh lên bảng làm bài tập
- Kiểm tra bài cũ đối với các học sinh khác
- Đôn đốc học sinh chủ động giải
- Nhận xét bài làm của học sinh
Học sinh:
- Chủ động giải toán
- Đối chiếu với lời giải và kết quả của bạn
- Cùng thầy cô nhận xét bài làm của bạn
Bài 3. Tính:
- Gọi 4 học sinh lên bảng làm bài tập
- Kiểm tra bài cũ; vở bài tập của học sinh
- Nhận xét bài
4. Củng cố bài học:
- Khái niệm nguyên hàm của hàm số; bảng đạo hàm của các hàm số sơ cấp cơ bản
- Các tính chất của nguyên hàm; và điều kiện tồn tại nguyên hàm
5. Bài tập và hướng dẫn học ở nhà: Làm bài tập 2. SGK và đọc trước các phương pháp tính nguyên hàm
D. Rút kinh nghiệm
Tiết 3
C. Tiến trình lên lớp
1. Ổn định lớp; kiểm tra sĩ số
2. Kiểm tra bài cũ: thực hiện trong quá trình lên lớp
3. Bài mới:
Nội dung kiến thức cần đạt
Hoạt động của thầy và trò
II. Các phương pháp tính nguyên hàm
1. Phương pháp đổi biến
Ví dụ: Tìm
Để áp dụng bảng nguyên hàm của các hàm số sơ cấp cơ bản ta là như sau:
Đặt . Ta có:
Định lí 1: Nếu với có đạo hàm liên tục thì
Hệ quả: Nếu thì
Giáo viên:
- Vấn đáp: Cho các nguyên hàm sau:
+) Có tồn tại các nguyên hàm đó không? Tại sao?
+) Có thể áp dụng luôn công thức để suy ra hay không? Tại sao lại như vậy?
+) Nếu biểu thức dưới dấu nguyên hàm là trong đó là một hàm số sơ cấp cơ bản thì để áp dụng bản nguyên hàm của các hàm số sơ cấp cơ bản thì tiếp theo dưới dấu nguyên hàm phải là hay ?
- Hướng dẫn chi tiết học sinh tính
- Yêu cầu học sinh tìm
Học sinh:
- Nghiên cứu lại bảng nguyên hàm; trả lời các câu hỏi của thầy cô
- Theo dõi chi tiết cách giải toán của thầy cô
- Độc lập tìm . Xung phong trình bầy lời giải.
Giáo viên:
- Gọi học sinh đứng tại chỗ trình bầy
- Nhận xét bài làm; rút kinh nghiệm; nhận xét việc tập chung nghe giảng của học sinh
- Phát biểu và chứng minh chi tiết định lí 1 và hệ qủa của nó.
Từ định lí trên ta có phương pháp tính nguyên hàm dạng như sau
Phương pháp đổi biến:
Bước 1: Đặt
Bước 2: Tính
Bước 3. Thay các yếu tố trên vào biểu thức
ta có:
Bước 4: Thay ngược lại ta có
Giáo viên:
Yêu cầu học sinh xem lại định lí trên và cách giải hai ví dụ ban đầu; hay xây dựng phương pháp tính nguyên hàm dạng
Học sinh:
- Làm việc theo hướng dẫn của thầy cô
- Xung phong trình bầy phương án của mình
Giáo viên:
- Gọi học sinh đứng tại chỗ trình bầy
- Nhận xét phương pháp của học sinh
- Đưa ra phương pháp dự kiến
- Lưu ý học sinh: Thông thường trong biểu thức bị ẩn đi. Cần phải luyện tập cách nhìn tinh tế để phát hiện ra nó; và dùng phép đổi biến cho có hiệu quả
Ví dụ . Tính các nguyên hàm sau:
Giải:
a. Đặt . Ta có
b. Đặt . Ta có
c. Đặt . Ta có:
Hay:
Ví dụ củng cố:
Giáo viên:
Chép đề; giao nhiệm vụ cho học sinh
Học sinh:
- Nghiên cứu đề bài; tìm hiểu nhiệm vụ
- Tìm phương án hoàn thành nhiệm vụ
- Xung phong trình bầy bài
Giáo viên:
- Gọi 3 học sinh lên bảng làm bài
- Giúp đỡ các học sinh khác giải toán
- Gọi học sinh nhận xét bài
- Chính xác hoá lời giải; Phân tích; góp ý cho các lời giải đề xuất khác
- Đưa ra lời giải dự kiến
- Hướng dẫn học sinh làm các khác đối với nguyên hàm như sau:
Đặt . Ta có:
4. Củng cố: Phương pháp đổi biến số để tính nguyên hàm
5. Bài tập và hướng dẫn học ở nhà: Làm bài tập 3. SGK và đọc trước phương pháp nguyên hàm từng phần
D. Rút kinh nghiệm
Tiết 4
C. Tiến trình lên lớp
1. Ổn định lớp; kiểm tra sĩ số
2. Kiểm tra bài cũ: thực hiện trong quá trình lên lớp
3. Bài mới:
Nội dung kiến thức cần đạt
Hoạt động của thầy và trò
Bài 1. Tính các nguyên hàm sau bằng phương pháp đổi biến theo hướng dẫn trong bài:
(Đặt )
(Đặt )
(Đặt )
(Đặt )
Giáo viên: Tổ chức cho học sinh tự ôn tập kiến thức cũ, hướng dẫn học sinh khai thác đề bài; tìm lời giải:
- Bảng nguyên hàm của các hàm số sơ cấp cơ bản?
- Đã có thể áp dụng luôn bảng đó chưa? Trở ngại gì mà ta đã gặp phải?
- Phương pháp đổi biến dùng để tính nguyên hàm dạng nào: Phương pháp đổi biến tính nguyên hàm?
Học sinh:
- Chủ động ôn tập kiến thức cũ
- Nghiên cứu đề bài; chủ động giải bài tập
- Xung phong lên bảng trình bầy bài
Giáo viên:
- Gọi 4 học sinh lên bảng làm bài
- Kiểm tra bài cũ; vở bài tập và giúp đỡ các học sinh khác giải toán
- Gọi học sinh nhận xét bài
- Rút kinh nghiệm cách giải bài tập
Bài 2. Tìm các nguyên hàm sau:
Gọi 4 học sinh lên bảng làm bài
Bài 3. Tìm các nguyên hàm sau:
Cách giải:
a.
Đặt . Do đó:
b. Đặt
c. Đặt
d. Biến đổi:
Giáo viên:
- Chép đề; giao nhiệm vụ cho học sinh(Có thể gợi ý; dẫn dắt học sinh tìm cách đặt biến mới)
Học sinh:
- Tìm hiểu đề bài; tìm phương án hoàn thành nhiệm vụ
- Xung phong trình bầy bài hoặc đề xuất các cách giải của mình
Giáo viên:
- Gọi 4 học sinh lên bảng làm bài
- Quan sát; động viên; giúp đỡ các học sinh khác giải toán
- Gọi học sinh nhận xét bài
- Rút kinh nghiệm các giải toán
- Phân tích; góp ý cho các lời giải đề xuất
- Đưa ra lời giải dự kiến
4. Củng cố: Phương pháp đổi biến số để tính nguyên hàm
5. Bài tập và hướng dẫn học ở nhà: Làm các bài tập trong sách bài tập
D. Rút kinh nghiệm
Tiết 5
C. Tiến trình lên lớp
1. Ổn định lớp; kiểm tra sĩ số
2. Kiểm tra bài cũ: thực hiện trong quá trình lên lớp
3. Bài mới:
Nội dung kiến thức cần đạt
Hoạt động của thầy và trò
2. Phương pháp tính nguyên hàm từng phần
Ví dụ: Tính
Giải:
Ta có:
Do đó ta có:
Hay
Hay:
Ta có thể viết kết quả này như sau:
Định lí 2: Nếu hai hàm số có đạo hàm liên tục trên thì
Chú ý: Vì nên có thể viết lại đẳng thức trên như sau: (Công thức nguyên hàm từng phần)
Hoạt động 1. Tiếp cận kiến thức:
Giáo viên: Yêu cầu một học sinh đứng tại chỗ giải bài toán:
1) Tính đạo hàm của hàm số
2) áp dụng các tính chất của nguyên hàm và bảng nguyên hàm; hãy tính . Từ đó hãy tính nguyên hàm:
Học sinh:
- Chủ động xem lại kiến thức cũ; và làm bài tập mà thầy cô đã đặt ra.
- Theo dõi và nhận xét bài làm của bạn
Giáo viên:
- Chính xác hoá lời giải
- Viết lại kết quả của bài toán dưới dạng
- Phân tích cách viết; phát biểu định lí tổng quát
Học sinh:
- Ghi nhận định lí(Việc chứng minh xem như bài tập)
Ví dụ: Tính các nguyên hàm sau:
Giải:
a. Đặt . Do đó ta có:
b. Đặt . Do đó ta có:
c. Đặt . Do đó ta có:
Giáo viên:
- Chép đề
- Chữa chi tiết ý a
- Giao nhiệm vụ cho học sinh làm ý b; c
Học sinh:
- Nghiên cứu đề bài
- Theo dõi chi tiết lời giải của thầy cô
- Chủ động tìm phương án hoàn thành nhiệm vụ mà thầy cô đã giao cho
- Xung phong trình bầy bài
Giáo viên:
- Gọi học sinh lên bảng làm bài
- Quan sát; động viên; giúp đỡ các học sinh khác làm bài tập
- Nhận xét bài làm của học sinh
- Chính xác hoá lời giải
Cách đặt trong một số dạng nguyên hàm thường gặp
Củng cố: Gọi là đa thức của . Từ ví dụ trên hãy hoàn thành bảng sau:
4. Củng cố bài học:
- Phương pháp tính nguyên hàm từng phần; Cách đặt trong các trường hợp thường gặp
5. Bài tập và hướng dẫn học ở nhà: Làm bài tập 4. SGK
D. Rút kinh nghiệm
TÍCH PHÂN
Thời lượng: 5 tiết
A. Mục tiêu
1. Kiến thức
- Biết khái niệm về diện tích hình thang cong. Biết định nghĩa tích phân của hàm số liên tục bằng công thức Newton- Leibnitz.
- Biết các tính chất của tích phân.
- Biết được các phương pháp tính tích phân (Phương pháp đổi biến số, phương pháp tính tích phân từng phần).
2.Kĩ năng:Tính được tích phân của một số hàm số tương đối đơn giản bằng định nghĩa, dựa vào tính chất, bằng phương pháp đổi biến số, phương pháp tích phân từng phần.
3.Thái độ: Chủ động, tích cực, tự giác trong học tập.
4.Năng lực hướng tới:
Năng lực chung
- Năng lực hợp tác, giao tiếp, tự học, tự quản lí
- Năng lực tuy duy, sáng tạo, tính toán, giải quyết vấn đề
- Năng lực sử dụng CNTT, sử dụng ngôn ngữ Toán học.
- Năng lực mô hình hóa toán học và năng lực giải quyết vấn đề
- Năng lực sử dụng công nghệ tính toán
Năng lực chuyên biệt: Thấy được ứng dụng của toán học trong đời sống, từ đó hình thành niềm say mê khoa học, và có những đóng góp sau này cho xã hội.
B. Nội dung chủ đề
Nội dung 1: Định nghĩa tích phân:
Nội dung 2: Tính chất của tích phân
Nội dung 3: Phương pháp tính tích phân: Phương pháp đổi biến số, phương pháp tích phân từng phần
Nội dung 4. Ứng dụng của tích phân trong hình học
Mô tả cấp độ tư duy của từng nội dung
1. Định nghĩa tích phân
NHẬN BIẾT
THÔNG HIỂU
VẬN DỤNG
VẬN DỤNG CAO
Phát biểu được định nghĩa tích phân, ký hiệu dấu tích phân, cận trên, cận dưới, biểu thức dưới dấu tích phân.
Biết được tích phân từ đến của hàm số là hiệu số:
trong đó là một nguyên hàm của hàm trên đoạn .
-Biết được:

- Sử dụng định nghĩa để tính được tích phân của một số hàm số đơn giản.
-Nhấn mạnh :
Tích phân đó chỉ phụ thuộc vào và các cận mà không phụ thuộc vào biến số hay
- Sử dụng định nghĩa để tính được tích phân của một số hàm số khác
Câu hỏi : Phát biểu định nghĩa tích phân, chỉ rõ dấu tích phân, cận trên, cận dưới, biểu thức dưới dấu tích phân (yêu cầu học sinh phát biểu định nghĩa)
Bài tập tương ứng:
Mức độ nhận biết:
- Xác định: cận trên, cận dưới và biểu thức dưới dấu tích phân của tích phân sau
- Tìm lời giải đúng trong các lời giải sau
Lời giải 1.
Lời giải 2.
Mức độ thông hiểu:
- Chứng tỏ :
-Nhấn mạnh : ;
- Nhắc lại bảng nguyên hàm của một số hàm số thường gặp
- Tính một số tích phân của hàm số dơn giản theo định nghĩa
- Tính các tích phân sau: 1. 2.
Mức độ vận dụng: Tính các tích phân sau: 1. 2.
Mức độ vận dụng cao: Tính các tích phân sau: 1. 2.
2.Tính chất của tích phân
NHẬN BIẾT
THÔNG HIỂU
VẬN DỤNG
VẬN DỤNG CAO
Phát biểu được các tính chất của tích phân
Biết đưa hằng số ra khỏi dấu tích phân, biết tách tích phân của tổng thành tổng các tích phân có cùng cận trên, cận dưới, biết tách tích phân thành nhiều tích phân bằng việc thêm cận mới.
Sử dụng tính chất để tính tích phân của một số hàm số đơn giản
Sử dụng tính chất để tính được tích phân của một số hàm số khác
Câu hỏi: Phát biểu các tính chất của tích phân
Bài tập tương ứng:
Mức độ nhận biết: Xét tính đúng, sai :
Mức độ thông hiểu: Xét tính đúng, sai: a. b.
Mức độ vận dụng: Tính các tích phân sau:
Mức độ vận dụng cao: Tính tích phân sau:
3. Phương pháp tính tích phân
NHẬN BIẾT
THÔNG HIỂU
VẬN DỤNG
VẬN DỤNG CAO
Phát biểu ( viết ra được) công thức tính tích phân bằng phương pháp đổi biến số hoặc lấy tích phân từng phần
Giải thích được các bước tính tích phân bằng phương pháp đổi biến số hoặc lấy tích phân từng phần
Tính được tích phân của một hàm số khi đã chỉ rõ phương pháp
Tính được tích phân của một hàm số khi chưa chỉ rõ phương pháp
Câu hỏi: Phát biểu công thức tính tích phân bằng phương pháp đổi biến , phương pháp tính tích phân từng phần
Bài tập tương ứng:
Mức độ nhận biết:
1.Phát biểu công thức biểu diễn cách đổi biến số khi tính tích phân?
2.Nêu các bước thực hiện khi tính tích phân hàm bằng phương pháp đổi biến số?
3.Phát biểu công thức biểu diễn cách lấy tích phân từng phần khi tính tích phân?
4.Nêu các bước thực hiện khi tính tích phân bằng phương pháp lấy tích phân từng phần?
Mức độ thông hiểu:
1.Tìm lỗi sai trong lời giải sau :
Đặt:
2.Công thức sau đúng hay sai? Vì sao?:
Mức độ vận dụng :
1. Tính các tích phân sau bằng phương pháp đổi biến số: ;
2.Tính các tích phân sau bằng phương pháp lấy tích phân từng phần: ;
Mức độ vận dụng cao:
1.Tính các tích phân: ;
2.Tính các tích phân : ;
C. Chuẩn bị
- Giáo viên: Giáo án, tài liệu tham khảo,đồ dùng trực quan, máy tính
- Học sinh: sách vở, đồ dùng học tập và kiến thức liên quan.
D. Tiến trình
1.Ổn định lớp, kiểm tra sĩ số
2.Kiểm tra bài cũ: trong giờ học
3.Bài mới:
HOẠT ĐỘNG 1: Khởi động: Các hình: tam giác, tứ giác, hình bình hành, hình thoi, hình vuông, hình chữ nhật, đường tròn các em đều tính được diện tích. Vậy còn hình sau: …. ai tính cho thầy diện tích của hình đó? Để giải quyết được vấn đề này ta sẽ đi vào chuyên đề ‘ Tích phân ” bởi chuyên đề ‘ Tích phân ” sẽ là công cụ giúp các em giải quyết được vấn đề này.
HOẠT ĐỘNG 2. HÌNH THÀNH KIẾN THỨC
Tiết 1
I. ĐỊNH NGHĨA TÍCH PHÂN
Hoạt động của thầy và trò
Nội dung kiến thức cần đạt
Mức độ nhận biết:
- Biết được tích phân từ đến của hàm số là hiệu số: , trong đó là một nguyên hàm của hàm trên đoạn
Hình thức tổ chức:
-Cho học sinh thảo luận, trao đổi nhóm và trả lời câu hỏi :
CH1: Phát biểu được định nghĩa tích phân, ký hiệu dấu tích phân, cận trên, cận dưới, biểu thức dưới dấu tích phân (yêu cầu các em phát biểu định nghĩa SGK Tr 105)
CH2:Cho VD và chỉ rõ cận trên, cận dưới, biểu thức dưới dấu tích phân?
- Cho học sinh nhận xét các báo cáo của từng nhóm, có phản biện.

onthicaptoc.com Chủ đề nguyên hàm tích phân

Xem thêm
1.1 Phương trình bậc nhất hai ẩn
1.1.1Phương trình bậc nhất hai ẩn
Định nghĩa .
BÀI TOÁN THỰC TẾ TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ
Câu 1.Để loại bỏ chất gây ô nhiễm không khí từ khí thải của một nhà máy, người ta ước tính chi phí cần bỏ ra là (triệu đồng).
Số tiệm cận đứng của đồ thị hàm số là?
BÀI TẬP TRẮC NGHIỆM HỆ THỨC LƯỢNG TRONG TAM GIÁC
Câu 1: Điểm là điểm trên đường tròn lượng giác, biểu diễn cho góc lượng giác có số đo . Tìm khẳng định đúng.
A. .B. .C. .D. .
BÀI 2: SỰ ĐIỆN LI, THUYẾT BRONSTED-LOWRY VỀ ACID-BASE
A. LÝ THUYẾT
Sự điện li là quá trình phân li các chất khi tan trong nước thành các ion. Chất điện li là những chất tan trong nước phân li thành các ion . Chất không điện li là chất khi tan trong nước không phân li thành các ion
PHƯƠNG PHÁP TÌM GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT
DỰA VÀ BẢNG BIẾN THIÊN VÀ ĐỒ THỊ
Ví dụ 1: Cho hàm số liên tục trên đoạn và có bảng biến thiên trong đoạn như hình. Gọi là giá trị lớn nhất của hàm số trên đoạn . Tìm giá trị của ?
TRẮC NGHIỆM ĐÚNG SAI ÔN TẬP CHƯƠNG PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
Câu 1.Trong không gian , cho điểm và mặt phẳng .
Khẳng định nào sau là đúng hay sai?
TRẮC NGHIỆM LÝ THUYẾT GIAO THOA SÓNG CƠ
Câu 1: (SBT - KNTT) Hiện tượng giao thoa sóng là hiện tượng
A. giao thoa của hai sóng tại một điểm trong môi trường.