onthicaptoc.com
NHÂN ĐƠN ĐA THỨC - HẰNG ĐẲNG THỨC ĐÁNG NHỚ
CÁC DẠNG BÀI TẬP
1. Tính toán, nhân đơn thức với đa thức, nhân đa thức với đa thức, triển khai hằng đẳng thức. Viết lại biểu thức đã cho theo yêu cầu. (Cần học thuộc các quy tắc nhân đơn đa thức và 7 hằng đẳng thức đáng nhớ. Lưu ý tránh nhầm dấu).
A.(B+C)=A.B+A.C
(A+B).(C+D)=A.C+A.D+B.C+B.D
(A+B)2 = A2 + 2AB + B2
(A-B)2 = A2 - 2AB + B2
(A+B)(A-B) = A2 - B2
(A+B)3 = A3 + 3A2B + 3AB2 + B3
(A-B)3 = A3 - 3A2B + 3AB2 - B3
(A+B)( A2 - AB + B2) = A3 + B3
(A-B)( A2 + AB + B2) = A3 - B3
2. Áp dụng hằng đẳng thức để tính nhẩm. (Yêu cầu thuộc bảng bình phương từ 1 đến 30, lập phương từ 1 đến 20).
3. Tính giá trị của biểu thức. ( Nên thu gọn biểu thức trước khi thay số để tính toán).
4. Chứng minh đẳng thức. (Biến đổi vế này thành vế kia, thông thường biến đổi vế phức tạp thành vế đơn giản hơn).
5. Chứng minh biểu thức có giá trị không phụ thuộc vào giá trị của biến. (Biến đổi biểu thức đã cho trở thành biểu thức số - không còn chứa biến nữa - thì khi đó với mọi giá trị của biến giá trị của biểu thức số không thay đổi).
6. Tìm giá trị nhỏ nhất của biểu thức M. Biến đổi biểu thức đã cho về dạng M = A2 + B trong đó A là một biểu thức có chứa biến còn B là một số hoặc một biểu thức số. Vì bình phương của mọi số thực đều không âm nên A2≥0 với mọi giá trị của biến số, do đó A2 + B≥B nên giá trị nhỏ nhất của biểu thức M là B. Dấu = xảy ra khi A=0.
7. Tìm giá trị lớn nhất của biểu thức M. Biến đổi biểu thức đã cho về dạng M = -A2 + B trong đó A là một biểu thức có chứa biến còn B là một số hoặc một biểu thức số. Vì bình phương của mọi số thực đều không âm nên A2≥0 với mọi giá trị của biến số, do đó -A2 + B≤B nên giá trị lớn nhất của biểu thức M là B. Dấu = xảy ra khi A=0.
Bài tập nhân đơn thức với đa thức
Bài 1: Thùc hiÖn nh©n ®¬n thøc víi ®a thøc :
a) 3x(5x2 - 2x - 1); b) (x2 - 2xy + 3)(-xy); c) x2y(2x3 - xy2 - 1);
d) x(1,4x - 3,5y); e) xy(x2 - xy + y2); f)(1 + 2x - x2)5x;
g) (x2y - xy + xy2 + y3). 3xy2; h) x2y(15x - 0,9y + 6); i) x4(2,1y2 - 0,7x + 35);
j) x(2x2+1). k) x2(5x3-x-) l) 6xy(2x2-3y)
Bµi 2. §¬n gi¶n biÓu thøc råi tÝnh gi¸ trÞ cña chóng.
a) 3(2a - 1) + 5(3 - a) víi a = .
b) 25x - 4(3x - 1) + 7(5 - 2x) víi x = 2,1.
c) 4a - 2(10a - 1) + 8a - 2 víi a = -0,2.
d) 12(2 - 3b) + 35b - 9(b + 1) víi b =
Bµi 3. Thùc hiÖn phÐp tÝnh sau:
a) 3y2(2y - 1) + y - y(1 - y + y2) - y2 + y; b) 2x2.a - a(1 + 2x2) - a - x(x + a);
c) 2p. p2 -(p3 - 1) + (p + 3). 2p2 - 3p5; d) -a2(3a - 5) + 4a(a2 - a).
Bµi 4. §¬n gi¶n c¸c biÓu tøc:
a) (3b2)2 - b3(1- 5b); b) y(16y - 2y3) - (2y2)2;
c) (-x)3 - x(1 - 2x - x2); d) (0,2a3)2 - 0,01a4(4a2 - 100).
Bài 5: Thùc hiÖn c¸c phÐp tÝnh
a, (x2y – 2xy)(-3x2y) b, x2(x – y) + y(x2 + y)
c, x(4x3 – 5xy + 2x) d, x2(x + y) + 2x(x2 + y)
Bài 6: TÝnh gi¸ trÞ biÓu thøc x2(x + y) - y(x2 – y2) t¹i x = -6 vµ y = 8
Bài 7 : T×m x biÕt :
a, 3x(12x – 4) – 9x(4x -3) = 30 b, 2x(x – 1) + x(5 – 2x) = 15
Bài tập nhân đa thức với đa thức
Bµi 1. Thùc hiÖn phÐp tÝnh:
a) (5x - 2y)(x2 - xy + 1); b) (x - 1)(x + 1)(x + 2); c) x2y2(2x + y)(2x - y);
d) (x - 1) (2x - 3); e) (x - 7)(x - 5); f) (x - )(x + )(4x - 1);
g) (x + 2)(1 + x - x2 + x3 - x4) - (1 - x)(1 + x +x2 + x3 + x4);
h) (2b2 - 2 - 5b + 6b3)(3 + 3b2 - b); i) (4a - 4a4 + 2a7)(6a2 - 12 - 3a3);
Bµi 2. Chøng minh:
a) (x - 1)(x2 - x + 1) = x3 - 1; b) (x3 + x2y + xy2 + y3)(x - y) = x3 - y3;
Bµi 3. Thùc hiÖn phÐp nh©n:
a) (x + 1)(1 + x - x2 + x3 - x4) - (x - 1)(1 + x + x2 + x3 + x4);
b) ( 2b2 - 2 - 5b + 6b3)(3 + 3b2 - b);
c) (4a - 4a4 + 2a7)(6a2 - 12 - 3a3);
d) (2ab + 2a2 + b2)(2ab2 + 4a3 - 4a2b)
e) (2a3 - 0,02a + 0,4a5)(0,5a6 - 0,1a2 + 0,03a4).
Bµi 4. Chøng minh r»ng gi¸ trÞ c¸c biÓu thøc sau kh«ng phô thuéc vµo biÕn y:
a) (y - 5)(y + 8) - (y + 4)(y - 1); b) y4 - (y2 - 1)(y2 + 1);
Bµi 5. T×m x, biÕt:
a) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4);
b) (8x - 3)(3x + 2) - (4x + 7)(x + 4) = (2x + 1)(5x - 1);
c) 2x2 + 3(x - 1)(x + 1) = 5x(x + 1);
d) (8 - 5x)((x + 2) + 4(x - 2)(x + 1) + (x - 2)(x + 2);
e) 4(x - 1)( x + 5) - (x +2)(x + 5) = 3(x - 1)(x + 2).
Bµi tËp h»ng ®¼ng thøc 1, 2, 3
Bµi 1. TÝnh
a) (x + 2y)2; b) (x - 3y)(x + 3y); c) (5 - x)2.
d) (x - 1)2; e) (3 - y)2 f) (x - )2.
Bµi 2. ViÕt c¸c biÓu thøc sau d­íi d¹ng b×nh ph­¬ng cña mét tæng:
a) x2 + 6x + 9; b) x2 + x + ; c) 2xy2 + x2y4 + 1.
Bµi 3. Rót gän biÓu thøc:
a) (x + y)2 + (x - y)2; b) 2(x - y)(x + y) +(x - y)2 + (x + y)2;
Bµi 4. T×m x, biÕt:
a) (2x + 1)2 - 4(x + 2)2 = 9; b) (x + 3)2 - (x - 4)( x + 8) = 1;
c) 3(x + 2)2 + (2x - 1)2 - 7(x + 3)(x - 3) = 36;
Bµi 5. TÝnh nhÈm theo c¸c h»ng ®¼ng thøc c¸c sè sau:
a) 192; 282; 812; 912; b) 19. 21; 29. 31; 39. 41;
c) 292 - 82; 562 - 462; 672 - 562;
Bµi 6. Chøng minh r»ng c¸c biÓu thøc sau lu«n lu«n cã gi¸ trÞ d­¬ng víi mäi gi¸ trÞ cña biÕn.
a) 9x2 - 6x +2; b) x2 + x + 1; c) 2x2 + 2x + 1.
Bµi 7. T×m gi¸ trÞ nhá nhÊt cña c¸c biÓu thøc sau:
a) A = x2 - 3x + 5; b) B = (2x -1)2 + (x + 2)2;
Bµi 8. T×m gi¸ trÞ lín nhÊt cña biÓu thøc:
a) A = 4 - x2 + 2x; b) B = 4x - x2;
Bµi tËp h»ng ®¼ng thøc 4, 5
Bài 1: Tính: a. (3 - y)3 b. (3x+2y2)3 c. (x-3y2)3 d.
e. f. g. (x+y)3 + (x-y)3
Bài 2: Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu:
a. –x3 + 3x2 -3x + 1
b. 8 – 12x + 6x2 – x3
c. x3 + x2 + +
d. 8x3 + 12x2 + 6x + 1
e. x3 – 6x2y + 12xy2 – 8y3.
f.
Bài 3: Tính giá trị của biểu thức
a. x3 + 12x2 + 48x + 64 tại x = 6 b. B = x3 – 6x2 + 12x – 8 tại x = 22
c. C= x3 + 9x2 + 27x + 27 tại x= - 103 d. D = x3 – 15x2 + 75x - 125 tại x = 25
Bµi tËp h»ng ®¼ng thøc 6, 7
Bài 1: Tìm x biết:
a) (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1; b) (x + 1)3 - (x - 1)3 - 6(x - 1)2 = -10
Bài 2: Rút gọn:
a. (x - 2)3 – x(x + 1)(x – 1) + 6x(x – 3)
b. (x - 2)(x2 – 2x + 4)(x + 2)(x2 + 2x +4)
d. (x + y)3 – (x - y)3 – 2y3
e. (x + y + z)2 – 2(x + y + z)(x + y) + (x + y)
c. (2x + y)(4x2 – 2xy +y2) – (2x - y)(4x2 + 2xy + y2)
Bài 3: Chứng minh
a. a3 + b3 = (a + b)3 – 3ab(a + b) b. a3 - b3 = (a - b)3 – 3ab(a - b)
Bài 4: a. Cho x + y = 1. Tính giá trị của biểu thức x3 + y3 + 3xy
b. Cho x - y = 1. Tính giá trị của biểu thức x3 - y3 - 3xy
Bài 5: Chứng minh biểu thức sau không phụ thuộc vào x:
a. A = (2x + 3)(4x2 – 6x + 9) – 2(4x3 – 1)
b. B = (x + y)(x2 – xy + y2) + (x - y)(x2 + xy + y2) – 2x3.
Bµi 6. Cho a + b + c = 0. Chøng minh M = N = P víi :
M = a(a + b)(a + c); N = b(b + c)(b + a); P = c(c + a)(c + b);
Bµi tËp tổng hợp h»ng ®¼ng thøc
Câu 1: Tính
Câu 2: Viết các đa thức sau thành tích
Câu 3: Rút gọn rồi tính giá trị của biểu thức
Câu 4: Tìm x, biết
Câu 5: Chứng minh:
Câu 6: Tìm giá trị nhỏ nhất của biểu thức:
Câu 7: Tìm giá trị lớn nhất của biểu thức
onthicaptoc.com

onthicaptoc.com cac dang bai tap hang dang thuc

Xem thêm
1.1 Phương trình bậc nhất hai ẩn
1.1.1Phương trình bậc nhất hai ẩn
Định nghĩa .
BÀI TOÁN THỰC TẾ TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ
Câu 1.Để loại bỏ chất gây ô nhiễm không khí từ khí thải của một nhà máy, người ta ước tính chi phí cần bỏ ra là (triệu đồng).
Số tiệm cận đứng của đồ thị hàm số là?
BÀI TẬP TRẮC NGHIỆM HỆ THỨC LƯỢNG TRONG TAM GIÁC
Câu 1: Điểm là điểm trên đường tròn lượng giác, biểu diễn cho góc lượng giác có số đo . Tìm khẳng định đúng.
A. .B. .C. .D. .
BÀI 2: SỰ ĐIỆN LI, THUYẾT BRONSTED-LOWRY VỀ ACID-BASE
A. LÝ THUYẾT
Sự điện li là quá trình phân li các chất khi tan trong nước thành các ion. Chất điện li là những chất tan trong nước phân li thành các ion . Chất không điện li là chất khi tan trong nước không phân li thành các ion
PHƯƠNG PHÁP TÌM GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT
DỰA VÀ BẢNG BIẾN THIÊN VÀ ĐỒ THỊ
Ví dụ 1: Cho hàm số liên tục trên đoạn và có bảng biến thiên trong đoạn như hình. Gọi là giá trị lớn nhất của hàm số trên đoạn . Tìm giá trị của ?
TRẮC NGHIỆM ĐÚNG SAI ÔN TẬP CHƯƠNG PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
Câu 1.Trong không gian , cho điểm và mặt phẳng .
Khẳng định nào sau là đúng hay sai?
TRẮC NGHIỆM LÝ THUYẾT GIAO THOA SÓNG CƠ
Câu 1: (SBT - KNTT) Hiện tượng giao thoa sóng là hiện tượng
A. giao thoa của hai sóng tại một điểm trong môi trường.