HAI MẶT PHẲNG VUÔNG GÓC
I. Góc giữa hai mặt phẳng :
1. Định nghĩa :
Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai đường thẳng đó .
2. Cách xác định góc giữa hai mặt phẳng :

Góc giữa hai mặt phẳng (P) và (Q) là góc giữa hai đường
thẳng a , b lần lượt nằm trên từng mặt phẳng và cùng
vuông góc với giao tuyến của hai mặt phẳng tại 1 điểm .
với
3. Diện tích hình chiếu :
Gọi S là diện tích đa giác H trong mp(P) , S’ là diện tích hình chiếu H’ của H lên mp(P’) . Góc giữa (P) và (P’) là thì :

III. Hai mặt phẳng vuông góc :
1. Định nghĩa :
Hai mặt phẳng vuông góc nếu góc giữa chúng là
2. Định lí 1 : ( Để chứng minh hai mặt phẳng vuông góc )
Hai mặt phẳng vuông góc khi mặt phẳng này chứa
một đường thẳng vuông góc với mặt phẳng kia .

3. Định lí 2 :

Hai mặt phẳng (P) , (Q) vuông góc nhau thì bất kì
đường thẳng a nằm trong mặt phẳng (P) và vuông
góc với giao tuyến của hai mặt phẳng thì a vuông
góc (Q)

4. Định lí 3 :

Hai mặt phẳng cắt nhau cùng vuông góc với mặt
phẳng thứ 3 thì giao tuyến của hai mặt phẳng ấy
vuông góc với mặt phẳng thứ 3
BÀI TẬP
Bài 1 : Hình chóp S.ABCD có đáy ABCD là hình chữ nhật , AB = a , AD = . SA = a
và SA vuông góc (ABCD) .
1) Chứng minh (SBC) vuông góc (SAB) và (SCD) vuông góc (SAD)
2) Tính góc giữa (SCD) và (ABCD)
Bài 2 : Hình chóp S.ABC có đáy ABC là tam giác vuông tại C , mặt bên SAC là tam giác
đều và vuông góc (ABC) .
1) Xác định chân đường cao H kẻ từ S của hình chóp .
2) Chứng minh (SBC) vuông góc (SAC) .
3) Gọi I là trung điểm SC , chứng minh (ABI) vuông góc (SBC)
Bài 3 : Cho hình chóp tam giác đều S.ABC có cạnh đáy là a . Gọi I là trung điểm BC .
1) Chứng minh (SBC) vuông góc (SAI) .
2) Biết góc giữa (SBC) và (ABC)là . Tính chiều cao SH cua hình chóp .
Bài 4 : Cho hình chóp tứ giác đều S.ABCD có cạnh bên và cạnh đáy cùng bằng a .
1) Tính độ dài đường cao hình chóp .
2) M là trung điểm SC . Chứng minh (MBD) vuông góc (SAC) .
3) Tính góc giữa mặt bên và mặt đáy của hình chóp .
Bài 5 : Hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a ,, SA = SB = SC
= a .
1) Chứng minh (SBD) vuông góc (ABCD)
2) Chứng minh tam giác SBD vuông .
Bài 6 : Cho tam giác đều ABC cạnh a , I là trung điểm BC và D là điểm đối xứng với A
qua I . Dựng và SD vuông góc (ABC) . Chứng minh :
1) (SAB) vuông góc (SAC) .
2) (SBC) vuông góc (SAD)
Bài 7 : Hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và . Có SA = SB =
SD = .
1) Chứng minh (SAC) vuông góc (ABCD) và SB vuông góc BC .
2) Tính tang của góc giữa (SBD) và (ABCD) .
Bài 8 : Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng
vuông góc nhau . Gọi I là trung điểm AB .
1) Chứng minh (SAD) vuông góc (SAB) .
2) Tính góc giữa SD và (ABCD) .
3) Gọi F là trung điểm AD . Chứng minh (SCF) vuông góc (SID) .
Bài 9 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA =và SA
vuông góc (ABCD) . Tính góc giữa (SBD) và (ABCD) .
Bài 10 : Hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D , AB = 2a ,
AD = CD =a , cạnh SA vuông góc với đáy và SA = a .
1) Chứng minh (SAD) vuông góc (SCD) và (SAC) vuông góc (SBC) .
2) Gọi là góc giữa hai mặt phẳng (SBC) và (ABCD) . Tính tan.
Bài 11: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a . SA = a và SA vuông
góc (ABCD) . Tính góc giữa (SBC) và (SCD)

onthicaptoc.com Bài tập về hai mặt phẳng vuông góc môn toán lớp 11

Xem thêm
1.1 Phương trình bậc nhất hai ẩn
1.1.1Phương trình bậc nhất hai ẩn
Định nghĩa .
BÀI TOÁN THỰC TẾ TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ
Câu 1.Để loại bỏ chất gây ô nhiễm không khí từ khí thải của một nhà máy, người ta ước tính chi phí cần bỏ ra là (triệu đồng).
Số tiệm cận đứng của đồ thị hàm số là?
BÀI TẬP TRẮC NGHIỆM HỆ THỨC LƯỢNG TRONG TAM GIÁC
Câu 1: Điểm là điểm trên đường tròn lượng giác, biểu diễn cho góc lượng giác có số đo . Tìm khẳng định đúng.
A. .B. .C. .D. .
BÀI 2: SỰ ĐIỆN LI, THUYẾT BRONSTED-LOWRY VỀ ACID-BASE
A. LÝ THUYẾT
Sự điện li là quá trình phân li các chất khi tan trong nước thành các ion. Chất điện li là những chất tan trong nước phân li thành các ion . Chất không điện li là chất khi tan trong nước không phân li thành các ion
PHƯƠNG PHÁP TÌM GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT
DỰA VÀ BẢNG BIẾN THIÊN VÀ ĐỒ THỊ
Ví dụ 1: Cho hàm số liên tục trên đoạn và có bảng biến thiên trong đoạn như hình. Gọi là giá trị lớn nhất của hàm số trên đoạn . Tìm giá trị của ?
TRẮC NGHIỆM ĐÚNG SAI ÔN TẬP CHƯƠNG PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
Câu 1.Trong không gian , cho điểm và mặt phẳng .
Khẳng định nào sau là đúng hay sai?
TRẮC NGHIỆM LÝ THUYẾT GIAO THOA SÓNG CƠ
Câu 1: (SBT - KNTT) Hiện tượng giao thoa sóng là hiện tượng
A. giao thoa của hai sóng tại một điểm trong môi trường.