SỞ GIÁO DỤC VÀ ĐÀO TẠO
TỈNH BÀ RỊA – VŨNG TÀU
ĐỀ CHÍNH THỨC
KỲ THI TUYỂN SINH LỚP 10 THPT
Năm học: 2018 - 2019
Môn thi: TOÁN
Thời gian làm bài:120 phút không kể thời gian giao đề
Bài 1. (2,5 điểm)
a) Giải phương trình
b) Giải hệ phương trình
c) Rút gọn biểu thức:
Bài 2. (1,5 điểm)
Cho parabol (P): và đường thằng (d): (m là tham số)
a) Vẽ parabol (P).
b) Với những giá trị nào của m thì (P) và (d) chỉ có một điểm chung. Tìm tọa độ điểm chung đó.
Bài 3. (1,5 điểm)
a) Hai ô tô khởi hành cùng một lúc từ thành phố A đến thành phố B cách nhau 450 km với vận tốc không đổi. Vận tốc xe thứ nhất lớn hơn vận tốc xe thứ hai 10km/h nên xe thứ nhất đến trước xe thứ hai 1,5 giờ. Tính vận tốc mỗi xe.
b) Cho phương trình: (với là tham số). Tìm tất cả các giá trị của để phương trình có hai nghiệm phân biệt thỏa và .
Bài 4. (3,5 điểm) Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn đó. Kẻ cát tuyến AMN không đi qua (O) (M nằm giữa A và N). Kẻ hai tiếp tuyến AB, AC với (O;R). (B và C là hai tiếp điểm và C tuộc cung nhỏ MN). Đường thẳng BC cắt MN và AO lần lượt tại E và F. Gọi I là trung điểm của MN.
a) Chứng minh rằng tứ giác ABOC nội tiếp được trong đường tròn.
b) Chứng minh EB.EC = EM.EN và IA là phân giác của .
c) Tia MF cắt (O;R) tại điểm thứ hai là D. Chứng minh rằng và .
d) Giả sử OA = 2R. Tính diện tích tam giác ABC theo R.
Bài 5. (1,0 điểm)
a) Giải phương trình .
b) Cho ba số thực dương a, b thỏa a + b + 3ab = 1. Tìm giá trị lớn nhất của biểu thức .
HƯỚNG DẪN GIẢI ĐỀ THI
Bài 1.
a) Ta có 1 + 4 – 5 = 0, phương trình đã cho có hai nghiệm
b)
Hệ phương trình đã cho có nghiệm
c)
Bài 2.
a) Bảng giá trị của (P)
x
– 2
– 1
0
1
2
8
2
0
2
8
b) Phương trình hoành độ giao điểm của (P) và (d) là:
.
(P) và (d) chỉ có một điểm chung khi phương trình (1) có nghiệm kép
=> hay.
Khi phương trình (1) có nghiệm kép .
Vậy tọa độ điểm chung khi đó là .
Bài 3.
a) Gọi vận tốc xe thứ nhất là x (km/h) (điều kiện: x > 10)
Thì vận tốc xe thứ hai là x – 10(km/h)
Thời gian xe thứ nhất đi hết quãng đường AB là: (h)
Thời gian xe thứ hai đi hết quãng đường AB là: (h)
Vì nên xe thứ nhất đến trước xe thứ hai 1,5 giờ ta có phương trình:
;
(nhận), (loại)
Vậy vận tốc xe thứ nhất là 60 (km/h)
Thì vận tốc xe thứ hai là 60 – 10 = 50(km/h)
b) a = 1; b = – m; c = – 1.
Vì a và c khác dấu, phương trình luôn có hai nghiệm khác dấu.
Theo hệ thức Viete ta có: (1)
Vì khác dấu mà .
Ta có: (2).
Từ (1) và (2) suy ra m = – 6.
Bài 4.
a) Vì AB là tiếp tuyến của (O) tại tiếp điểm B AB OB hay
Vì AC là tiếp tuyến của (O) tại tiếp điểm C AC OC hay .
Tứ giác ABOC có nên tứ giác ABOC nội tiếp đường tròn đường kính AO.
b) Xét và có:
(hai góc nội tiếp cùng chắn cung NB)
(hai góc nội tiếp cùng chắn cung MC)
.
Vì AB, AC là tiếp tuyến của (O) lần lượt tại các tiếp điểm B và C nên và AB = AC (tính chất hai tiếp tuyến cắt nhau)
Vì I là trung điểm MN (quan hệ vuông góc giữa đường kính và dây)
I nằm trên đường tròn đường kính OA.
Xét đường tròn đường kính OA ta có:
(hai góc nội tiếp cùng chắn một cung)
Mà
hay IA là phân giác của .
c) Vì AB = AC và OB = OC nên AO là đường trung trực của BC AO vuông góc với BC tại F.
Xét vuông tại C, đường cao CF ta có và.
Xét và có: và chung
Xét và có:
Xét và có:
(hai góc nội tiếp cùng chắn cung MB)
(đối đỉnh)
Xét và có:
và
Mà
.
và có: FO cạnh chung, , ON = OD
Vì FN = FD và ON = OD FO là đường trung trực của ND FOND mà ND//BC.
d) Xét vuông tại C ta có:
.
Xét vuông tại C ta có:
có AB = AC và là tam giác đều.
đường cao
Bài 5.
a) Điều kiện: . Với ta có:
Giải (*) .
Với ta có: .
Dấu ‘=” xảy ra khi và chỉ khi x = 0. Vậy (*) có nghiệm x = 0.
Vậy phương trình đã cho có tập nghiệm {0; 1}.
b) Đặt
Ta có:
.
Ta có:
Dễ dàng chứng minh
.
(1)
Ta có: (2).
Từ (1) và (2) suy ra: .
Đẳng thức xảy ra khi .
Vậy giá trị lớn nhất của P là đạt được khi .
onthicaptoc.com Đề thi và đáp án kỳ thi tuyển sinh thi vào lớp 10 VŨNG TÀU 2018 2019
Câu 1.
1) Tính giá trị của biểu thức tại
KÌ THI HỌC KÌ I
TRƯỜNG THPT .............
MÔN ĐỊA LÍ - LỚP 10
ĐỀ CHÍNH THỨC
TỈNH / THÀNH PHỐ ………….
ĐỀ THI ĐỀ NGHỊ
ĐỀ THI THỬ VÀO LỚP 10 LẦN 1
NĂM HỌC 2017 - 2018
NĂM 2019 - 2020 CÓ ĐÁP ÁN
ĐỀ 1
ĐỀ KIỂM TRA HỌC KÌ I
TRƯỜNG THPT ..............