ĐỀ THI VÀO 10
Bài 1 (2.0 điểm )
1. Tìm x để mỗi biểu thức sau có nghĩa
a) b)
2. Trục căn thức ở mẫu
a) b)
3. Giải hệ phương trình :
Bài 2 (3.0 điểm )
Cho hàm số y = x2 và y = x + 2
a) Vẽ đồ thị của các hàm số này trên cùng một mặt phẳng tọa độ Oxy
b) Tìm tọa độ các giao điểm A,B của đồ thị hai hàm số trên bằng phép tính
c) Tính diện tích tam giác OAB
Bài 3 (1.0 điểm )
Cho phương trình x2 – 2mx + m 2 – m + 3 có hai nghiệm x1 ; x 2 (với m là tham số ) .Tìm biểu thức x12 + x22 đạt giá trị nhỏ nhất.
Bài 4 (4.0 điểm )
Cho đường tròn tâm (O) ,đường kính AC .Vẽ dây BD vuông góc với AC tại K ( K nằm giữa A và O).Lấy điểm E trên cung nhỏ CD ( E không trùng C và D), AE cắt BD tại H.
a) Chứng minh rằng tam giác CBD cân và tứ giác CEHK nội tiếp.
b) Chứng minh rằng AD2 = AH . AE.
c) Cho BD = 24 cm , BC =20cm .Tính chu vi của hình tròn (O).
d) Cho góc BCD bằng α . Trên mặt phẳng bờ BC không chứa điểm A , vẽ tam giác MBC cân tại M .Tính góc MBC theo α để M thuộc đường tròn (O).
======Hết======
Hướng dẫn:
Bài 1 (2.0 điểm )
1. Tìm x để mỗi biểu thức sau có nghĩa
a) b)
2. Trục căn thức ở mẫu
a) b)
3. Giải hệ phương trình :
Bài 2 (3.0 điểm )
Cho hàm số y = x2 và y = x + 2
a) Vẽ đồ thị của các hàm số này trên cùng một mặt phẳng tọa độ Oxy
Lập bảng :
x
0
- 2
x
- 2
- 1
0
1
2
y = x + 2
2
0
y = x2
4
1
0
1
4
O
y
x
A
B
C
K
H
b) Tìm toạ độ giao điểm A,B :
Gọi tọa độ các giao điểm A( x1 ; y1 ) , B( x2 ; y2 ) của hàm số y = x2 có đồ thị (P) và y = x + 2 có đồ thị (d)
Viết phương trình hoành độ điểm chung của (P) và (d)
x2 = x + 2 ó x2 – x – 2 = 0
( a = 1 , b = – 1 , c = – 2 ) có a – b + c = 1 – ( – 1 ) – 2 = 0
;
thay x1 = -1 y1 = x2 = (-1)2 = 1 ;
x2 = 2 y2 = 4
Vậy tọa độ giao điểm là A( - 1 ; 1 ) , B( 2 ; 4 )
c) Tính diện tích tam giác OAB
Cách 1 : SOAB = SCBH - SOAC =(OC.BH - OC.AK)= ... =(8 - 2)= 3đvdt
Cách 2 : Ctỏ đường thẳng OA và đường thẳng AB vuông góc
OA ; BC = ;
AB = BC – AC = BC – OA =
(ΔOAC cân do AK là đường cao đồng thời trung tuyến OA=AC)
SOAB = OA.AB = đvdt
Hoặc dùng công thức để tính AB = ;OA=...
Bài 3 (1.0 điểm ).Tìm biểu thức x12 + x22 đạt giá trị nhỏ nhất.
Cho phương trình x2 – 2mx + m 2 – m + 3
( a = 1 ; b = - 2m => b’ = - m ; c = m2 - m + 3 )
Δ’ = ...= m2 - 1. ( m2 - m + 3 ) = m2 - m2 + m - 3 = m – 3 ,do pt có hai nghiệm x1 ; x 2 (với m là tham số ) Δ’ ≥ 0 m ≥ 3 theo viét ta có:
x1 + x2 = ... = 2m
x1 . x2 = ... = m2 - m + 3
x12 + x22 = ( x1 + x2) 2 – 2x1x2 = (2m)2 - 2(m2 - m + 3 )=2(m2 + m - 3 )
=2(m2 + 2m + - - ) =2[(m +)2 - ]=2(m +)2 -
Do điều kiện m ≥ 3 m + ≥ 3+=
(m +)2 ≥ 2(m +)2 ≥ 2(m +)2 - ≥ - = 18
Vậy GTNN của x12 + x22 là 18 khi m = 3
Bài 4 (4.0 điểm )
a) Chứng minh rằng tam giác CBD cân và tứ giác CEHK nội tiếp.
* Tam giác CBD cân
AC BD tại K BK=KD=BD:2(đường kính vuông góc dây cung) ,ΔCBD có đường cao CK vừa là đường trung tuyến nên ΔCBD cân.
* Tứ giác CEHK nội tiếp
( góc nội tiếp chắn nửa đường tròn) ; (gt)
(tổng hai góc đối) tứ giác CEHK nội tiếp
b) Chứng minh rằng AD2 = AH . AE.
Xét ΔADH và ΔAED có :
; AC BD tại K ,AC cắt cung BD tại A suy ra A là điểm chính giữa cung BAD , hay cung AB bằng cung AD (chắn hai cung bằng nhau) .Vậy ΔADH = ΔAED (g-g)
c) Cho BD = 24 cm , BC =20cm .Tính chu vi của hình tròn (O).
BK=KD=BD:2 = 24:2 = 12 (cm) ( cm câu a ) ; BC =20cm
* ΔBKC vuông tại A có : KC = =16
A
O
B
M
C
E
D
M’
K
H
B”
D”
* ( góc nội tiếp chắn nửa đường tròn)
ΔABC vuông tại K có : BC2 =KC.AC 400 =16.AC AC = 25R= 12,5cm
C = 2пR = 2п.12,5 = 25п (=25.3,14 = 78.5) (cm)
d)Tính góc MBC theo α để M thuộc đường tròn (O).
ΔMBC cân tại M có MB = MC suy ra M cách đều hai đầu đoạn thẳng BC M d là đường trung trực BC ,(OB=OC nên O d ),vì M(O) nên giả sử d cắt (O) tại M (M thuộc cung nhỏ BC )và M’(thuộc cung lớn BC ).
* Trong trường hợp M thuộc cung nhỏ BC ; M và D nằm khác phía BC hay AC
do ΔBCD cân tại C nên
Tứ giác MBDC nội tiếp thì
* Trong trường hợp M’ thuộc cung lớn BC
ΔMBC cân tại M có MM’ là đường trung trực nên MM’ là phân giác góc BMC
sđ(góc nội tiếp và cung bị chắn)
sđ (góc nội tiếp và cung bị chắn)
+ Xét suy ra tồn tại hai điểm là M thuộc cung nhỏ BC (đã tính ở trên )và M’ thuộc cung lớn BC .
Tứ giác BDM’C nội tiếp thì (cùng chắn cung BC nhỏ)
+ Xét thì M’≡ D không thỏa mãn điều kiện đề bài nên không có M’ ( chỉ có điểm M tmđk đề bài)
+ Xét (khi BD qua tâm O và BDAC)M’ thuộc cung không thỏa mãn điều kiện đề bài nên không có M’ (chỉ có điểm M thỏa mãn đk đề).
onthicaptoc.com Đề thi có đáp án tuyển sinh vào 10 môn toán năm học 2009 THPT chuyên tỉnh quảng nam
1.1.1Phương trình bậc nhất hai ẩn
Định nghĩa .
Câu 1.Để loại bỏ chất gây ô nhiễm không khí từ khí thải của một nhà máy, người ta ước tính chi phí cần bỏ ra là (triệu đồng).
Số tiệm cận đứng của đồ thị hàm số là?
Câu 1: Điểm là điểm trên đường tròn lượng giác, biểu diễn cho góc lượng giác có số đo . Tìm khẳng định đúng.
A. .B. .C. .D. .
A. LÝ THUYẾT
Sự điện li là quá trình phân li các chất khi tan trong nước thành các ion. Chất điện li là những chất tan trong nước phân li thành các ion . Chất không điện li là chất khi tan trong nước không phân li thành các ion
DỰA VÀ BẢNG BIẾN THIÊN VÀ ĐỒ THỊ
Ví dụ 1: Cho hàm số liên tục trên đoạn và có bảng biến thiên trong đoạn như hình. Gọi là giá trị lớn nhất của hàm số trên đoạn . Tìm giá trị của ?
Câu 1.Trong không gian , cho điểm và mặt phẳng .
Khẳng định nào sau là đúng hay sai?
Câu 1: (SBT - KNTT) Hiện tượng giao thoa sóng là hiện tượng
A. giao thoa của hai sóng tại một điểm trong môi trường.