Sở GD-ĐT Hà Nam
Trường THPT C Phủ Lý
Đề chính thức
(Đề thi có 8 trang)
ĐỀ KIỂM TRA CHẤT LƯỢNG 8 TUẦN HỌC KỲ I
Năm học 2017-2018
Môn: Toán 12
(50 câu trắc nghiệm khách quan)
Thời gian làm bài: 90 phút (Không kể thời gian giao đề)
Mã đề thi 001
(Thí sinh không được sử dụng tài liệu)
Họ, tên thí sinh:..................................................................... Số báo danh: .............................
Câu 1: Cho lăng trụ , trên cạnh lấy các điểm M, N sao cho Mặt phẳng chia khối lăng trụ đã cho thành hai phần. Gọi là thể tích khối chóp , là thể tích khối đa diện . Tính tỉ số
A. B. C. D.
Câu 2: Hàm số có bao nhiêu điểm cực trị?
A. 0 B. 1 C. 3 D. 2
Câu 3: Hàm số có bao nhiêu điểm cực trị?
A. 3. B. 0. C. 1. D. 2.
Câu 4: Bảng biến thiên sau là của hàm số nào ?
A. B. C. D.
Câu 5: Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số ?
A. B. C. D.
Câu 6: Cho hàm số xác định trên liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau :
Khẳng định nào dưới đây sai ?
A. Hàm số đồng biến trên khoảng
B. Giá trị lớn nhất của hàm số trên khoảng bằng 3.
C. Hàm số đạt cực đại tại
D. Đồ thị hàm số có 3 đường tiệm cận.
Câu 7: Tìm m để đồ thị hàm số có hai đường tiệm cận đứng.
A. B. C. D.
Câu 8: Số đường tiệm cận của đồ thị hàm số là:
A. 3 B. 0 C. 2. D. 1.
Câu 9: Cho lăng trụ có thể tích V. Tính thể tích của khối chóp theo V.
A. B. C. D.
Câu 10: Đường cong hình bên dưới là đồ thị của một trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào ?
A. B. C. D.
Câu 11: Tìm M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn .
A. B. ; C. ; D. ;
Câu 12: Cho hàm số có đồ thị hình dưới :
Chọn khẳng định đúng.
A. B.
C. D.
Câu 13: Cho hàm số có bảng biến thiên như sau:
Phương trình có bao nhiêu nghiệm?
A. 1. B. 3. C. . D. 0.
Câu 14: Hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy, SC tạo với đáy một góc . Thể tích của khối chóp S.ABCD là:
A. B. C. D.
Câu 15: Tìm tất cả các giá trị của m để phương trình: có hai nghiệm phân biệt.
A. B. C. D.
Câu 16: Hàm số đồng biến trên khoảng nào?
A. B. C. D.
Câu 17: Cho đồ thị hàm số có điểm cực đại là , điểm cực tiểu là . Tìm tất cả các giá trị của m để phương trình có 3 nghiệm phân biệt.
A. B. C. D.
Câu 18: Hàm số đạt cực tiểu tại điểm nào?
A. B. C. D.
Câu 19: Cho hàm số . Đồ thị của hàm số như hình dưới:
Mệnh đề nào dưới đây đúng ?
A. Hàm số nghịch biến trên khoảng.
B. Hàm số đạt cực tiểu tại
C. Hàm số đạt cực đại tại
D. Hàm số đồng biến trên khoảng.
Câu 20: Cho hàm số xác định trên R. Đồ thị hàm số cắt trục hoành tại 3 điểm a, b, c như hình dưới:
Biết Đồ thị hàm số cắt trục hoành tại bao nhiêu điểm phân biệt.
A. 4 B. 1 C. 0 D. 2.
Câu 21: Cho hàm số có đồ thị như hình vẽ bên dưới:
Khẳng định nào sau đây đúng ?
A. B. C. D.
Câu 22: Cho lăng trụ . Gọi B là diện tích một đáy của lăng trụ, V là thể tích của lăng trụ. Tính chiều cao h của lăng trụ.
A. B. C. D.
Câu 23: Cho hình chóp tứ giác có đáy ABCD là hình chữ nhật có cạnh bên SA vuông góc với mặt phẳng đáy và . Thể tích V của khối chóplà :
A. B. C. D.
Câu 24: Tìm giá trị thực của tham số để hàm số đạt cực đại tại.
A. B. C. D.
Câu 25: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích của khối chóp S.ABCD.
A. B. C. D.
Câu 26: Cho hàm số . Khẳng định nào sau đây là khẳng định đúng ?
A. Đồ thị của hàm số đã cho có đường tiệm cận đứng và một tiệm cận ngang .
B. Đồ thị của hàm số đã cho có đường tiệm cận đứng và một tiệm cận ngang .
C. Đồ thị của hàm số đã cho có đường tiệm cận đứng
D. Đồ thị của hàm số đã cho có một đường tiệm cận ngang là
Câu 27: Tìm tất cả các giá trị của m để hàm số nghịch biến trên R.
A. B. . C. D.
Câu 28: Đường cong hình bên dưới là đồ thị của một trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào ?
A. B. C. D.
Câu 29: Hàm số nghịch biến trên khoảng nào?
A. B. C. D.
Câu 30: Cho hàm số xác định trên R và có . Hàm số có bao nhiêu điểm cực trị?
A. 1 B. 4. C. 3 D. 2
Câu 31: Khoảng đồng biến của hàm số là :
A. (2 ; 4 ) B. (0 ; 2) C. D.
Câu 32: Cho hình chóp S.ABC có thể tích V. Gọi M, N, P là các điểm thỏa mãn Tính thể tích của khối chóp S.MNP theo V.
A. B. C. D.
Câu 33: Tìm giá trị cực đại của hàm số .
A. 4 B. -1 C. 1 D. 0
Câu 34: Đồ thị của hàm số và đường thẳng cắt nhau tại ba điểm phân biệt sao cho có diện tích bằng 8 (O là gốc tọa độ). Mệnh đề nào đưới đây đúng ?
A. là số nguyên tố.
B. là số chẵn.
C. là số vô tỉ.
D. là số chia hết cho 3.
Câu 35: Hàm số nào sau đây đồng biến trên khoảng
A. . B. . C. . D. .
Câu 36: Số giao điểm của đồ thị hàm số và đồ thị hàm số là:
A. 1 B. 0 C. 2 D. 3
Câu 37: Cho hàm số và hàm số . Tìm m để phương trình có 4 nghiệm phân biệt.
A. B. C. D.
Câu 38: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, Tính thể tích V của khối chóp S.ABCD.
A. B. C. D.
Câu 39: Viết phương trình tiếp tuyến của đồ thị hàm số , biết tiếp tuyến có hệ số góc
A. B. C. D.
Câu 40: Hàm số có bao nhiêu điểm cực trị ?
A. 1 B. 0 C. 2 D. 3
Câu 41: Cho hình chóp S. ABC , đáy tam giác ABC có diện tích bằng . Cạnh bên và . Tính thể tích của khối chóp S.ABC.
A. B. C. D.
Câu 42: Biết rằng đồ thị hàm số: có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân. Tính giá trị của biểu thức : .
A. B. C. D.
Câu 43: Cho hàm số có bảng biến thiên dưới đây:
Chọn khẳng định sai.
A. Hàm số đạt cực đại tại B. Hàm số có 2 điểm cực trị.
C. Hàm số đạt cực tiểu tại D. Hàm số có giá trị cực tiểu
Câu 44: Hàm số đạt giá trị lớn nhất, giá trị nhỏ nhất trên đoạn tại 2 điểm . Tính giá trị của biểu thức
A. B. C. D.
Câu 45: Cho hình chóp tam giác có đáy là tam giác đều cạnh , và . Thể tích của khối chóp bằng:
A. . B. . C. D. .
Câu 46: Cho lăng trụ đứng , có đáy ABC là tam giác vuông tại A, cạnh bên . Tính thể tích của khối lăng trụ .
A. . B. . C. D. .
Câu 47: Cho hàm số . Giá trị bằng:
A. B. 1 C. 2 D. 3.
Câu 48: Cho khối chóp S.ABC có SA vuông góc với (ABC), tam giác ABC vuông tại A, AB=4a,
AC=SA=3a. Tính thể tích của khối chóp S.ABC.
A. B. C. D.
Câu 49: Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ là:
A. B. C. D.
Câu 50: Thể tích của khối lăng trụ tam giác đều, có tất cả các cạnh bằng a là :
A. . B. ; C. ; D. ;
-----------------------------------------------
----------- HẾT ----------
Tổ Toán – Tin
MA TRẬN TỔNG QUÁT ĐỀ THI THPT QUỐC GIA MÔN TOÁN 2018
STT
Các chủ đề
Mức độ kiến thức đánh giá
Tổng số câu hỏi
Nhận biết
Thông hiểu
Vận dụng
Vận dụng cao
Lớp 12
(...%)
1
Hàm số và các bài toán liên quan
8
15
10
4
37
2
Mũ và Lôgarit
0
0
0
0
0
3
Nguyên hàm – Tích phân và ứng dụng
0
0
0
0
0
4
Số phức
0
0
0
0
0
5
Thể tích khối đa diện
3
4
5
1
13
6
Khối tròn xoay
0
0
0
0
0
7
Phương pháp tọa độ trong không gian
0
0
0
0
0
Lớp 11
(...%)
1
Hàm số lượng giác và phương trình lượng giác
0
0
0
0
0
2
Tổ hợp-Xác suất
0
0
0
0
0
3
Dãy số. Cấp số cộng. Cấp số nhân
0
0
0
0
0
4
Giới hạn
0
0
0
0
0
5
Đạo hàm
0
0
0
0
0
6
Phép dời hình và phép đồng dạng trong mặt phẳng
0
0
0
0
0
7
Đường thẳng và mặt phẳng trong không gian Quan hệ song song
0
0
0
0
0
8
Vectơ trong không gian Quan hệ vuông góc trong không gian
0
0
0
0
0
Tổng
Số câu
11
19
15
5
50
Tỷ lệ
22%
38%
30%
10%
ĐÁP ÁN
1-C
2-C
3-B
4-A
5-D
6-A
7-B
8-C
9-A
10-B
11-D
12-B
13-B
14-C
15-B
16-C
17-C
18-B
19-D
20-D
21-D
22-C
23-D
24-C
25-A
26-B
27-D
28-A
29-D
30-D
31-B
32-C
33-A
34-B
35-D
36-C
37-A
38-A
39-D
40-A
41-D
42-B
43-D
44-C
45-A
46-A
47-A
48-A
49-B
50-A
LỜI GIẢI CHI TIẾT
Câu 1: Đáp án C.
Vậy : .
Câu 2: Đáp án C
Có cho
Vậy có 3 điểm cực trị.
Câu 3: Đáp án B
Có vậy hàm số đã cho không có điểm cực trị.
Câu 4: Đáp án A.
Dựa vào bảng biến thiên , hàm số không xác định tại do đó loại B.
Lại có do đó loại C.
Dựa vào bảng biến thiên, hàm số luôn nghịch biến, do đó chọn A
Câu 5: Đáp án D.
Cần tìm tiệm cận ngang, do đó loại B, C.
Có và vậy chọn D.
Câu 6: Đáp án A
Vì hàm số không xác định tại nên hàm số đồng biến trên .
Câu 7: Đáp án B
Để hàm số có có hai tiệm cận đứng thì có hai nghiệm phân biệt hay
Câu 8: Đáp án C
Ta có: Hàm số có tiệm cận đứng ;
Ta có : Hàm số có tiệm cận ngang .
Vậy hàm số có 2 tiệm cận.
Câu 9: Đáp án A
Ta có:
Câu 10: Đáp án B
Ta loại A, C vì đồ thị trên có hệ số
Đồ thị đi qua điểm nên chọn phương án B.
Câu 11: Đáp án D
Câu 12: Đáp án B
Nhánh cuối của đồ thị đi xuông
Tích hai điểm cực trị của hàm số là số âm trái dấu
Tổng hai điểm cực trị của hàm số là số dương trái dấu
Câu 13: Đáp án B
Đương thẳng cắt đồ thị hàm số tại khoảng giữa hai điểm cực trị nên có 3 giao điểm với đồ thị.
Câu 14: Đáp án C
Diện tích đáy:
Góc giữa SC và mặt đáy bằng góc bằng
Thể tích :
Câu 15: Đáp án B
Đồ thị hàm số có dạng
Với điểm cực tiểu là nên để phương trình có hai nghiệm thì .
Câu 16: Đáp án C
; y’>0
Vậy hàm số đồng biến trên khoảng
Câu 17: Đáp án C
Phương trình có ba nghiệm phân biệt nếu
Câu 18: Đáp án B
Vậy x =2 là điểm cực tiểu
Câu 19: Đáp án D
Nhìn vào hình vẽ ta thấy đồ thị nằm hoàn toàn trên trục Ox nên y’>0 với mọi x do đó hàm số đồng biến trên R
Câu 20: Đáp án D
Trên khoảng và hàm số đồng biến vì đồ thị nằm hoàn toàn trên trục Ox
Hàm số nghịch biến trên các khoảng và vì
Suy ra x=b là điểm cực đại mà y(b) <0 do đó trục hoành cắt đồ thị tại hai điểm phân biệt. Với d<0 ta có
x
a b c
y’
- 0 + 0 - 0 +
Y
d
Câu 21: Đáp án D
Dựa vào đồ thị hàm số dễ dàng nhận biết . Đồ thị hàm số có 3 điểm cực trị nên trái dấu. Từ đó ta có .
Câu 22: Đáp án C
Thể tích lăng trụ là .
Câu 23: Đáp án D
.
Câu 24: Đáp án C
Ta có .
Hàm số đạt cực đại tại khi và chỉ khi.
Câu 25: Đáp án A
Trong kẻ . Ta có .
Vậy .
Câu 26: Đáp án B
Ta có: suy ra TCN:
suy ra TCĐ:
Câu 27: Đáp án D
Với ta có
Hàm số đã cho nghịch biến trên
Câu 28: Đáp án A
Đồ thị hàm số hướng lên trên nên ; hàm số có ba cực trị nên và hàm số nằm phía dưới trục nên hệ số . Vậy hàm số cần tìm là :
Câu 29: Đáp án D
Với ta có
Xét dấu:
Vậy hàm số nghich biến trên
Câu 30: Đáp án D
Xét dấu:
Vậy hàm số có 2 cực trị
Câu 31: Đáp án B
Hàm số
Tập xác định
Vậy Hàm số đồng biến trên khoảng
Câu 32: Đáp án C
Ta có
Câu 33 : Đáp án A
BBT
X
-1 1
Y’
+ 0 - 0 +
Vậy giá trị cực đại bằng 4
Câu 34: Đáp án B
Gọi ;
Mà
d là đường thẳng . Suy ra
Ta có
Theo giả thiết, ta được
Câu 35: Đáp án D
Tập xác định:
Vậy hàm số đồng biến trên R
Câu 36: Đáp án C
Phương trình hoành độ giao điểm:
onthicaptoc.com Đề khảo sát chất lượng học kỳ 1 môn toán lớp 12 năm 2017 trường thpt c phủ lý mã 1
Câu 1.Họ nguyên hàm của hàm số: là
A. .B. .
A. .B. .C. .D. .
Trong không gian , cho mặt phẳng . Véc tơ nào dưới đây là một véc tơ pháp tuyến của ?
A. .B. .C. .D. .
Câu 2. Hình lăng trụ có cạnh có bao nhiêu mặt?
MÔN: TOÁN-ĐỀ 1
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn, gồm 12 câu, tổng 3,0 điểm. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.(Mỗi câu đúng 0,25 điểm)
Câu 1. Cho hàm số có đồ thị như Hình 1.
Môn thi: TOÁN – Giáo dục trung học phổ thông
ĐỀ THI CHÍNH THỨC Thời gian làm bài: 180 phút, không kể thời gian giao đề
Số báo danh: ……………………………………….Câu 1: Cho hàm số có bảng biến thiên như sau:
Số điểm cực trị của hàm số đã cho là