onthicaptoc.com
TRẮC NGHIỆM BẤT PHƯƠNG TRÌNH LÔGARIT
DẠNG 1: BẤT PHƯƠNG TRÌNH LÔGARIT CƠ BẢN
Câu 1: Tập nghiệm của bất phương trình là
A. . B. . C. . D. .
Câu 2: Tập nghiệm của bất phương trình là
A. . B. . C. . D. .
Câu 3: Tập nghiệm của bất phương trình là
A. B. . C. . D. .
Câu 4: Tập nghiệm của bất phương trình là
A. . B. . C. . D.
Câu 5: Tìm tập nghiệm của bất phương trình .
A. . B. . C. . D. .
Câu 6: Tập nghiệm của bất phương trình là
A. . B. . C. . D. .
Câu 7: Tìm tập nghiệm của bất phương trình .
A. . B. . C. . D.
Câu 8: Tập nghiệm của bất phương trình là
A. . B. . C. . D. .
Câu 9: Tập nghiệm của bất phương trình là
A. B. C. D.
Câu 10: Số nghiệm nguyên của bất phương trình là
A. Vô số. B. 4 . C. 2 . D. 3 .
Câu 11: Giải bất phương trình được tập nghiệm là . Hãy tính tổng .
A. . B. . C. . D. .
Câu 12: Tập nghiệm của bất phương trình là:
A. . B. . C. . D. .
Câu 13: Nghiệm của bất phương trình là
A. . B. . C. . D. .
Câu 14: Tập nghiệm của bất phương trình là
A. . B. . C. . D. .
Câu 15: Tìm tập nghiệm của bất phương trình .
A. . B. . C. . D. .
Câu 16: Giải bất phương trình .
A. hoặc . B. hoặc .
C. . D. .
Câu 17: Số nghiệm nguyên của bất phương trình là
A. 6 . B. Vô số. C. 4 . D. 5 .
Câu 18: Tập xác định của hàm số là
A. . B. . C. . D. .
Câu 19: Tập nghiệm của bất phương trình là
A. B. C. D. .
Câu 20: Tập nghiệm của bất phương trình là
A. . B. . C. . D. .
Câu 21: Tập nghiệm của bất phương trình là
A. . B. . C. . D. .
Câu 22: Có tất cả bao nhiêu số nguyên thỏa mãn bất phương trình ?
A. Vô số. B. 1 . C. 0 . D. 2 .
Câu 23: Bất phương trình có tập nghiệm là . Tính giá trị .
A. . B. . C. . D. .
Câu 24: Tìm số nghiệm nguyên của bất phương trình .
A. 1 . B. 2 . C. 0 . D. Vô số nghiệm.
Câu 25: Tập nghiệm của bất phương trình là
A. B. . C. . D. .
Câu 26: Giải bất phương trình .
A. . B. . C. . D. .
DẠNG 2: BIẾN ĐỔI VỀ PHƯƠNG TRÌNH LOGARIT CƠ BẢN
Câu 27: Tập nghiệm của bất phương trình: là
A. . B. . C. . D. .
Câu 28: Bất phương trình có các nghiệm là
A. . B. . C. . D. .
Câu 29: Tập nghiệm của bất phương trình là:
A. . B. . C. . D. .
Câu 30: Giải bất phương trình được tập nghiệm là
A. . B. . C. . D. .
Câu 31: Tìm tập nghiệm của bất phương trình .
A. . B. . C. . D.
Câu 32: Giải bất phương trình .
A. . B. . C. . D. .
Câu 33: Nghiệm của bất phương trình là
A. . B. C. . D. .
Câu 34: Tìm nghiệm nguyên nhỏ nhất của bất phương trình
A. . B. . C. . D. .
Câu 35: Số nghiệm nguyên của bất phương trình là
A. vô số. B. 0 . C. 2 . D. 1.
Câu 36: Giải bất phương trình .
A. B. C. D. hoặc
Câu 37: Có bao nhiêu giá trị nguyên dương của thỏa mãn bất phương trình.
A. 10. B. 19. C. 18. D. 20.
Câu 38: Tìm tập nghiệm của bất phương trình .
A. . B. C. . D. .
Câu 39: Nghiệm của bất phương trình là:
A. B. C. D.
Câu 40: Bất phương trình có bao nhiêu nghiệm nguyên
A. 3 . B. 1 . C. 4 . D. 2 .
Câu 41: Tập nghiệm của bất phương trình là
A. B. C. . D.
Câu 42: Tìm tập nghiệm của bất phương trình .
A. B. . C. . D. .
Câu 43: Tổng tất cả các nghiệm nguyên của bất phương trình bằng
A. 12 B. 9 C. 5 D. 3
Câu 44: Giải bất phương trình .
A. . B. . C. . D. Vô nghiệm.
Câu 45: Bất phương trình có tập nghiệm là
A. . B. . C. . D. .
Câu 46: Nghiệm của bất phương trình là:
A. . B. . C. . D. .
Câu 47: Tìm tập nghiệm của bất phương trình .
A. . B. . C. . D. .
Câu 48: Biết là một nghiệm của bất phương trình . Tập nghiêm T của bất phương trình là
A. B. C. D.
Câu 49: Tập nghiệm của bất phương trình là:
A. . B. . C. . D. .
Câu 50: Tìm tập nghiệm của bất phương trình .
A. B. C. . D. .
onthicaptoc.com
onthicaptoc.com 50 cau TN BPT Logarit
KẾ HOẠCH DẠY HỌC CỦA GIÁO VIÊN
MÔN TOÁN - KHỐI LỚP 12 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG
I. Phương pháp
Bước 1: Tìm tập xác định .
DẠNG 1: CÁC PHÉP VECTƠ TRONG KHÔNG GIAN
Câu 1.Cho hình tứ diện có trọng tâm và là một điểm bất kỳ. Mệnh đề nào sau đây đúng?
Câu 1. Trong không gian với hệ trục tọa độ . Tọa độ của vectơ là
A. .B. .C. .D. .
Câu 1: Cho thỏa . Khi đó giá trị lớn nhất của biểu thức bằng bao nhiêu?
A. .B. .C. .D. .
I. VIẾT PHƯƠNG TRÌNH TIẾP TUYẾN TẠI MỘT ĐIỂM
Câu 1. Cho hàm số , có đồ thị và điểm . Phương trình tiếp tuyến của tại là:
Câu 1: Cho hàm số liên tục trên đoạn . Gọi là một nguyên hàm của hàm số trên đoạn .
a) .